Derivation for $Y_{R}{ }^{*}$

Here we derive the equation $Y_{R}{ }^{*}=Y_{R}\left(\frac{\phi_{i}{ }^{n}}{K_{\phi}{ }^{n}+\phi_{i}{ }^{n}}\right)$
In our circuits, lets say, one molecule of Y_{R} combines with n molecules of Al to form $Y_{R}{ }^{*}$ complex. This reaction can be written as follows:
$n[A I]+\left[Y_{R}\right] \rightarrow\left[Y_{R}{ }^{*}\right]$
So, Rate of forward reaction: $K_{1}[A I]^{n}\left[Y_{R}\right]$
Rate of backward reaction: $K_{2}\left[Y_{R}{ }^{*}\right]$
Let Al concentration be A
Y_{R} concentration be R
$Y_{R}{ }^{*}$ concentration be C
At equilibrium,
Rate of forward reaction = Rate of backward reaction.
$\mathrm{K}_{1}(\mathrm{~A}-\mathrm{nC})^{\mathrm{n}}(\mathrm{R}-\mathrm{C})=\mathrm{K}_{2} \mathrm{C}$
If A is very large, $(A-n C) \approx A$
$\mathrm{K}_{1} \mathrm{An}^{n}(\mathrm{R}-\mathrm{C})=\mathrm{K}_{2} \mathrm{C}$
$K_{1} A^{n}(R)-K_{1} A^{n} C=K_{2} C$
$\mathrm{K}_{1} \mathrm{~A}^{\mathrm{n}}(\mathrm{R})=\mathrm{C}\left(\mathrm{K}_{1} \mathrm{~A}^{\mathrm{n}}+\mathrm{K}_{2}\right)$
$C=\frac{K_{1} A^{n}(R)}{K_{1} A^{n}+K_{2}}$
$C=\frac{R A^{n}}{\left(\frac{K_{1}}{K_{2}}\right)+A^{n}}$
$C=\frac{R(A)^{n}}{K+(A)^{n}}$
Here our C is concentration of $Y_{R}{ }^{*}, R$ is concentration of Y_{R} and A is internal $A I$ concentration (Φ_{i}).

Hence we get the equation,
$Y_{R}{ }^{*}=Y_{R}\left(\frac{\phi_{i}{ }^{n}}{K_{\phi}{ }^{n}+\phi_{i}{ }^{n}}\right)$

