Derivation for Y_R^*

Here we derive the equation $Y_R^* = Y_R \left(\frac{\phi_i^n}{K_{\phi}^n + \phi_i^n} \right)$

In our circuits, lets say, one molecule of Y_{R} combines with n molecules of AI to form $Y_{\text{R}}{}^{\star}$ complex. This reaction can be written as follows:

$$n[AI]+[Y_R]\rightarrow[Y_R^*]$$

So, Rate of forward reaction: $K_1[AI]^n[Y_R]$

Rate of backward reaction: $K_2[Y_R^*]$

Let AI concentration be A Y_R concentration be R Y_R^* concentration be C

At equilibrium, Rate of forward reaction = Rate of backward reaction.

 $K_1(A - nC)^n(R - C) = K_2C$

If A is very large, $(A - nC) \approx A$

 $K_1A^n(R-C) = K_2C$

 $K_1A^n(R) - K_1A^nC = K_2C$

 $\mathsf{K}_1\mathsf{A}^n(\mathsf{R}) = \mathsf{C}(\mathsf{K}_1\mathsf{A}^n + \mathsf{K}_2)$

$$C = \frac{K_1 A^n(R)}{K_1 A^n + K_2}$$
$$C = \frac{R A^n}{\left(\frac{K_1}{K_2}\right) + A^n}$$
$$C = \frac{R(A)^n}{K + (A)^n}$$

Here our C is concentration of Y_R^* , R is concentration of Y_R and A is internal AI concentration (Φ_i).

Hence we get the equation,

$$Y_R^* = Y_R \left(\frac{\phi_i^n}{K_{\phi}^n + \phi_i^n} \right)$$