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1 Introduction

The stochastic uctuation in gene expression arises in one of two ways in-

trinsic and extrinsic noise. Here, intrinsic noise is the focus of interest: Cells

are intrinsically noisy biochemical reactors; low reactant numbers can lead to

signi�cant statistical uctuations in molecule numbers and reaction rates.[6]

It has been brought to light that 'gene expression has a stochastic component

due to the single molecule nature of the gene and the small number of copies

of individual DNA-binding proteins in the cell'[7]. 'Noise is seen as being

detrimental and volatile in di�erent systems of interest. However, living sys-

tems are inherently noisy and are optimised to function in the presence of

stochastic uctuations'[6]. In this case the system of interest is a single cell or

bacteria of a bacterial whole cell bio-sensor, noise is investigated on a cellular

level using a stochastic modelling algorithm called Gillespie algorithm. 'A

stochastic model is a tool for estimating probability distributions of potential

outcomes by allowing random variation in one or more inputs over time'[1].It

can give a better prediction of the behaviour of a system, especially on a

single cellular level. It takes into account a number of parameters that con-

tribute to the model in a random manner rather than assuming everything

can be predicted deterministically.[2.1]

2 Aims

The aim of the stochastic approach to modelling the general bio-sensor was

generally to provide, as accurately as possible, a prediction of the behaviour
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of the system on a single cell level. This was achieved in a number of di�erent

ways:

� Find a simple model of the system that still accurately represents the

behaviour of the full model but needs less data.

� Investigate the output and measure the noise with di�erent values of

signal.

� locate the parameters that the system is most sensitive to and investi-

gate the e�ect these have on the value at which P4 saturates and the

e�ect these have on the noise in the output.

� Explore the e�ect of positive feedback on the output of P4 and inves-

tigate the noise with and without positive feedback.

� Explore the e�ect of leakiness of Phz on the output of P4 and investi-

gate the noise with and without leakiness.

� Consider the deterministic approach and run the stochastic simulation

for a large number of cells to investigate whether it is equivalent to the

deterministic approach.

3 Background Theory

3.1 Gillespie Algorithm

'The Gillespie algorithm allows a discrete and stochastic simulation of the

system with few reactants because every reaction is individually simulated'.

The aim of this algorithm is to draw two random numbers at each time

step, one is to determine the next reaction index (choose which reaction

will occur) and the second is to determine the time until the next reaction.

It works using the number of molecules rather than the concentration. A

concentration can be converted into the number of molecules by multiplying

it by the volume of the system and Avogadro's constant. 'The quantity

characterising each reaction is the probability a

�

(t)dt that, given the state

of the system at time t, reaction � will occur in volume V in the interval

(t,t+dt). a

�

(t) is the product of two parts, the reaction rate c

�

and the

number of possible reactions � in volume V. This is called the propensity

function for each reaction'.[3-5]
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3.1.1 Implementation of the Algorithm

The implementation of the algorithm is as follows:[3][5]

Step 1: Initialise the number of molecules in the system, reactions constants

and random number generators.

Step 2: Find the time � after t at which the next reaction will take place,

by drawing a random number from an exponential probability density

function. This is known as the Monte Carlo Step.

Step 3: Choose at random the reaction which will occur at time t+ � . Draw

a random number from a uniform distribution between 0 and 1.

Step 4: Go back to step one and reiterate this process for as long as you

want to follow the system.

3.2 Measuring noise

'Intrinsic noise is determined by the structure, reaction rates and species

concentrations of the underlying biochemical networks'[6]. The relative size

of noise can be measured in a number of ways. In this report, only two were

investigated, the Fano factor and the coe�cient of variation are used. The

Fano factor is de�ned as:

Fano =

�

2

�

; (1)

where �

2

is the variance and � is the mean of the output. The Fano factor of

an arbitrary stochastic system reveals deviations from Poissonian behaviour

and it is a sensitive measure of noise. [6] There is also the coe�cient of

variation, which is de�ned as:

coeffvar =

�

�

; (2)

where � is the standard deviation and, again, � is the mean. This coe�cient

is a measure of dispersion of a probability distribution and is often used as

another measure of noise[7]. The two are obviously conected via the ratio.
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4 The Model

Instead of solving a full set of ODE's, Gillespie algorithm was used to get a

probability distribution of the output over all possible states for each time t.

4.1 The Speci�c System

The speci�c system studied by the Glasgow IGEM team was used as a basis

for the general model of a bio-sensor that is capable to detect a pollutant. The

experemental team constructed two systems in parallel, one to detect xylene

and another to detect salicylate (both referred to in the model as signal). 'In

these systems, the pollutant forms a complex with a constitutively expressed

transcription factor (TF), which in turn drives the expression of proteins

allowing the bacteria to degrade the pollutant. By replacing the genes that

encode these proteins with a reporter gene, an easily detectable output signal,

such as pH or colour change is produced, thus creating a bio-sensor'[9]. The

two systems the experimental team constructed were as folllows:the �rst.

4.2 Full Model

Initially a full model for the speci�c biobrick system the Glasgow IGEM team

was studying,was derived. This could be used for the stochastic approach

and ODE's were derived for the deterministic approach. The full model

included each of the mRNA binding sites as well as each of the transcription

and translation reactions. The full model can be illustrated on �gure 1. This

model could have been extended further, for example by considering each

step binding and unbinding. However, this would make the model completely

unusable as there are no available rate constants for most of the stages. As is

seen from the diagram below, there is already a great deal of rate constants

needed (c(1)� c(18)).
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Due to the lack of available data and information, the majority of the rate

constants are very unlikely to be found. Instead the model was simpli�ed

to a point at which it was still a realistic approximation of the complete

biological system.

4.3 Simpli�ed Model

The simpli�ed model for a general bio-sensor is as follows. With TF being the

transcription factor, S being the signal, TFS the complex of the two, and P3

and P4 the two proteins formed in the cascade. In the speci�c case studied

P4 is the measurable output Pyocyanin. Below is a diagram illustrating the

simpli�ed model and a table of rate constants:
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reaction rate constant propensity function

�! TF � = c(1) a(1) = c(1)

TF ! � �

TF

= c(2) a(2) = c(2) �X(1)

TF + S ! TFS K1 � S = c(3) a(3) = c(3) �X(1)

TFS ! TF + S Km1 = c(4) a(4) = c(4) �X(2)

TFS ! � �

TFS

= c(5) a(5) = c(5) �X(2)

�! P3

��TFS

+TFS

= c(6) a(6) = c(6)

P3! � �

P3

= c(7) a(7) = c(7) �X(3)

P3! P4 �

2

= c(8) a(8) = c(8) �X(3)

P4! � �

P4

= c(9) a(9) = c(9) �X(4)

5 Method

5.1 Simulating the Bio-sensor

AMatlab code was written using Gillespie algorithm implementing the above

model for a general bio-sensor (code(1.1)). However, problems occurred for

the speci�c system studied by the team. It was found that the binding

and unbinding reactions of TFS are much faster than the other reactions for

example c(3) = 10

6

�S and c(4) = 10

6

�4, whereas c(8) = 1:3 . This increases

� , the time until next reaction, which in turn makes the code run agonisingly

slow for practical purposes. The reactions are interconnected and not easy

to separate. In order to get round this problem, a method called slow scale
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stochastic simulation algorithm was used. The code(1.1) was amended so as

to to calculate the fast reactions seperatelycode(1.2), so that the propensity

functions could be changed. The and the code then skips the fast reactions

and simulates only the slow reactions code(1.3) and was used as follows:

� Code(1.2) was simulated over a very small time interval of 0.0005s

for each signal, in order to obtain a sampling interval for TF which

consisted of mean+ =� std.

� TF was sampled from the obtained interval and an equation to compute

TFS was obtained and implemented in code (1.3) TFS =

K1�TF�S

Km1

.

� The �nal four reactions were simulated using code (1.3) over the re-

quired time interval (100000s) for a given number of simulations and a

given number of cells.

� Plots of P4 output over time and P4 output with increasing signal

could then be obtained and investigated. This was all implemented in

code(1.3)

� The noise present in the output of P4 could also be studied and is

implemented in code(1.3).

Below are graphs and tables of noise calculated for output of P4 over time

for di�erent signals. Each graph represents a di�erent number of cells being

simulated (1,5,10 and 100), averaged over 10 runs. 1 cell 5 cells 10 cells
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Signal=10
Signal=50
Signal=100
Signal=150
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Signal(�M) 10 50 100 150 200 400 800

Fano 19:3 74:2 113:9 133:6 153:9 188:8 196:8

coe� var 0:4467 0:4452 0:4475 0:4499 0:4503 0:4469 0:4435

Signal(�M) 10 50 100 150 200 400 800

Fano 183 734 1114 1352 1525 1882 2038

coe� var 0:4556 0:4407 0:4491 0:4502 0:4460 0:4478 0:4476
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Signal(�M) 10 50 100 150 200 400 800

Fano 183 734 1114 1352 1525 1882 2038

coe� var 0:4511 0:4475 0:4462 0:4478 0:4481 0:4445 0:4475

100 cells

Signal(�M) 10 50 100 150 200 400 1927

Fano 1927 7323 11158 13426 15023 18661 20507

coe� var 0:4475 0:4455 0:4460 0:4465 0:4460 0:4426 0:4469

As was expected, increasing signal gives a higher output of P4 as is shown

in each of the above graphs. Inspecting the fano factor shows that as the

output of P4 increases so does the noise in the system. However, the fano

factor did not behave as was expected when increasing the number of cells.

The noise in the system is expected to decrease. To investigate this further

the coe�cient of variation was calculated and, as the number of cells increses,

the noise does decrease. This is particulary evident when inspecting the val-

ues of noise for 10 and 100 cells as for each signal, the coe�cient of variation

is lower for 100 cells.

The goal was to construct a biosensor that will yeild a graded response

to signal. Due to the extreme di�culties experienced by the Glasgow IGEM

wetab in obtaining data, simulations were compared to that in a paper that

investigated a similar system by Willardson et al[10]. In this paper a graded

response of the luminescent output is measured over di�erent concentrations

of signal.The main parameter that a�ects this was found to be . Using

the plot from the Willardson et al paper [10], where the output reached

its half maximum at around S=200 �M so  was �xed at 170�M. If  is

smaller than this then the output will saturate very quickly and at very low

signals. Di�erent values of  were investigated ranging from 170 to 500.

The simulation was run for 1,5 and 10 cells each for 10 runs. A graph for

pyocyanin output over signal for each of the 5 values of  (10 cells) is given

below with standard deviation intervals of output at each value of signal.

The noise in the system was calculated over signal for each of the values of

gamma for 1,5 and 10 cells, however only the tables for  = 170 and  = 500

for 10 cells have been inculded below so as to compare the results:
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phz

= 170

Signal(�M) 10 50 100 150 200 400 800

Fano 183 734 1114 1352 1525 1882 2038

coe� var 0:4511 0:4475 0:4462 0:4478 0:4481 0:4445 0:4475



phz

= 500

Signal(�M) 10 50 100 150 200 400 800

Fano 63 277 430 536 619 802 895

coe� var 0:4398 0:4526 0:4430 0:4497 0:4507 0:4490 0:4482

As is evident from the graph a higher value of  gives a more graded

response of P4, as was expected from observations made in the Willardson

et al paper [10]. When  increases, investigating the Fano factor shows that

the noise in the output decreases, so the output of the protein is more stable.

5.2 leakiness

Leakiness of the promoter is unregulated expression of the gene. This means

that even without any signal or bound transcription factor, there is still

mRNA regulation of the gene and the outpt P4 will still be produced. This
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can be modelled by changing c(6) to:

��TFS

+TFS

+ �. So, if � > 0 leakiness

occurs and if � = 0 it doesn't.If the value of � is comparable to the value of

the original c(6), the signal itself will have very little e�ect and the sensor

would be useless. Below are two graphs illustrating the behaviour of the

system with and without leakiness. The �rst is a graded response of output

to signal the lower line illustrates without leakiness and the higher line il-

lustrates with. The second is output of pyocyanin over time the bottom line

illustrates without leakiness and the top with. The simulations represented

in these graphs were run for 10 cells and averaged over 10 runs. All of the

parameter constants and initial concentrations of proteins were the same in

all simulations, only the � was changed.
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phz

= 170

Signal(�M) 10 50 100 150 200 400 800

Fano 202 718 1133 1354 1471 1884 2046

coe� var 0:4511 0:4422 0:4483 0:4479 0:4428 0:4465 0:4441

Leakiness, 10 cells, 

phz

= 170

Signal(�M) 10 50 100 150 200 400 800

Fano 827 1399 1759 1978 2168 2451 2737

coe� var 0:4465 0:4519 0:4482 0:4478 0:4489 0:4440 0:4515

After examination of the graphs it is apparent that the promoter with

leakiness provides a higher output of P4, this could give a false indication of

the level of Signal detected.
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5.3 positive feedback

will �nish later Positive feedback is an interaction that increases or ampli�es

the response of the system in which it is incorporated. Although increasing

the output of the �nal protein P4, positive feedback makes the system very

noisy. Because the rate constants were so high the code(1.3) was used with

feeback put as true and the results were as follows: **will put a picture of

positive feedback here***** ***waiting on data hopefuly will get it today***

5.4 stochastic vs deterministic

Below is a graph from the deterministic approach, an equivalent system was

modelled stochastically for 10 and 100 cells averaged over 10 runs. Below

is the graph obtained from the deterministic ODE approach. The the line

of interest in this case is the top line which represents the output of P4 or

Pyocyanin.
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The two graphs below represent the stochastic approach for 10 and 100

cells. In both approaches all of the rate constants and initial concentrations

are the same to ensure the two approaches are comparable.
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Stochastic modelling may give a more accurate description of the be-

haviour in the system for a single cell or even 10 cells as it models the noise

that occurs. However, as is evident from the above graphs, for a very large

number of cells the two approaches are equivalent due to the fact that as the

number of cells increases the noise cancells out.

5.5 Conclusions and reccomendations

Using the results from the di�erent systems modelled certain reccomenda-

tions can be made for others building a biosensor. Changing gamma can

give a graded response to signal. However, if  < 170 the output of P4 sat-

urates at very lower values of signal. If at all possible, leakiness should be

completely avoided. However, due to the unpredicable nature of biological

systems, this cannot always be the case. If leakiness does occur, it should

be as low a level as possible. Positive feedback does give a higher output of

the response P4, i does not however, give a graded output of P4 at di�erent

signals. The noise is also higher when positive feedback is implemented.
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