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Mathematical Model

ferential equations of the dynamics of our system depend on four basic variables:
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ere,
Q0 — number of luxR transcripts

ﬂR —> translational rate of LuxR
YR —> degradation rate of LuxR

yc —> dilution factor, as cells divide concentration of LuxR decreases
Y1 —> degradation rate of LuxI

ﬂl —> translational rate of LuxI
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ﬂl —> repression coefficient
a1 ﬂl —> basal gene expression

Q1 —> maximum gene expression

YR" —> concentration of LuxR* (LuxR" is the complex formed when Al binds to LuxR)
N —> Hill co-efficient.

KR —> half saturation constant.

xR Feedback Loop:
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Where,
Q0 — number of luxIR transcripts

/1R —> translational rate of LuxR
YR —> degradation rate of LuxR

y4 —> dilution factor, as cells divide concentration of LuxR decreases
Y1 —> degradation rate of LuxI

Al — translational rate of Luxl
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Any gene expression has a sigmoidal form (X1 ﬂl +

ﬂl —> repression coefficient
a1 ﬂl —> basal gene expression

(1 —> maximum gene expression

YR" —> concentration of LuxR* (LuxR" is the complex formed when Al binds to LuxR)
N —> Hill co-efficient.

Kr —> half saturation constant.
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e above equation can be arrived at using diffusion theory. The derivation for the same is
ilable here.

1 —> rate constant determining the production rate of autoinducer due to LuxI
1) — diffusion rate of autoinducer across the cell
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V1—> volume occupied by cells,
V2 — volume of the medium.
Vi
— — pPVc
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ere, 0 —> cell number density
Ve —> volume of individual cell

xR* is a complex that is obtained by the binding of autoinducer molecules to LuxR. The
mation of LuxR* is very fast and for all practical purposes, we can assume the levels of
xR* to be in quasi-equilibrium. Hence, the concentration of LuxR* is given as,
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is equation is derived using elementary rate kinetics. The derivation can be found here.



to growth of cells in the medium, the volume fraction occupied by the cells increases with

r to facilitate computation, we rescale our set of differential equations in order to make
imensionless. We define the following quantities:
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red quantities have dimensions similar to their corresponding unbarred variables and all

antities are dimensionless scaling factors.

r to draw effective parameters, we set some of the parameters as follows,
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: LuxI in feedback

al equations in the rescaled dimensionless form are as follows,
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e parameters were drawn at random from certain ranges based on biological
rations and the model was simulated.

eter ranges:

ntilog (3, 5) [Based on our analysis that K¢ >1073]
tilog (-2,-1) [Basal expression is 1/100th-1/10th]
tilog (-1, 0) [degradation rate is 1/10th-1th of the rate of dilution ( }’c ) which is set to 1]
tilog (-1, 0) [same reason]
tilog (-1, 0) [same reason]
tilog (-1, 0) [same reason]
ilog (1, 2)* K¢ [based on our analysis that 7] >10* K¢; so 10 times to 100 times K¢]

ntilog (-1, 1) [to span full range of curve characteristics)

tilog (-1, 0) [we consider max protein expression rate to be 1 and basal to be 0.1]
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