
iGEM México Simulation on Stochastic  π-Calculus

Introduction

Morphogenesis and pattern formation.

One of the most important problems in developmental biology is the understanding of how 
structures emerge in living systems. Several mechanisms have been proposed, 
depending on the observed patterns. The so called Turing patterns are based on the 
interaction of two effects: diffusion of some chemicals, called morphogenes, and the 
chemical interaction between them. It has been highly controversial whether some 
patterns observed in several organisms are of this type. In particular, although some 
systems have been identified to be of activator-inhibitor type (the most popular Turing 
system proposed by Gierer and Meindhart), it is still questioned if pattern formation and 
more generally, the appearance of functional structures can be understood by means of 
Turing patterns or more broadly, reaction-diffusion mechanisms.

One of the main goals of our project is to test different pattern formation mechanisms, not 
only Turing patterns, but also oscillatory and time varying structures. We propose that if 
the appropriate genetic construction is implanted in a colony of bacteria, the reaction-
diffusion mechanism can be replaced by a genetic control system. This fact is first 
illustrated with the, by now classical, repressilator. Then we give two constructions of 
our own. The first is a modification of Elowitz system, which included both positive and 
inhibitory interactions. The positive ones are in fact dependent on quorum diffusible 
signals.  

In order to model these systems, we use both a stochastic pi calculus and differential 
equations approach. For this construction experiments are yet to be performed.

For the other construction, we have two plasmids embedded in two different colonies. 
Each plasmid allows the bacterium to fluoresce red or green respectively.

Our hypothesis is that competition between these two colonies once they are allowed to
interact might function as a Turing system. For this we already have experimental results, 

and preliminary models.



General description of the Stochastic  π-Calculus:

Systems Biology can be broadly divided into two complementary approaches. On the one 
hand, scientists are doing experiments in the lab and studying the results, in order to 
infer general properties of biological systems. On the other hand, scientists are trying to 
build detailed models of systems on a computer and then testing these models in the 
lab. This is the approach that we are focussing on at this part of iGEM México. Such 
models can be a powerful tool, since they allow a biologist to simulate a range of 
experiments on a computer, before testing the most promising ones in the lab, saving 
considerable time and money. They also clarify how a biological system functions.

In order to build such models, we need tools that are suitable for modelling complex, 
parallel biological systems. We also need tools that can scale up to very large systems. 
This points towards the need for a biological programming language. 

Over the years, there has been considerable research on designing programming 
languages that are suitable for developing complex parallel computer systems. 
Interestingly, some of this research is also applicable to biological systems, which are 
typically highly complex and massively parallel. One example of such a language is the 
stochastic pi-calculus...

The pi-calculus is also a mathematical programming language. There has been decades 
of research on analysis techniques for pi-calculus. Many of these techniques are 
directly applicable to biological modelling, and could help provide insight into 
fundamental properties of biological systems.

The stochastic pi-calculus is essentially a calculus of actions and processes. Specifically 
developed for modelling concurrent systems in Computer Science, but can be used to 
model Biological systems in a nice way. Each process can be used to describe the 
behavior of a molecule in the system, such as a gene or protein. The actions describe 
what the molecules can do. In particular, a molecule can do an input, an output or just a 
delay. 

Delay represents an internal reaction like radioactive decay, or change of shape. Delay is 
associated with a rate, which determines the average duration of the reaction. Like the 
rate of radiactive decay, which is used to determine the half-life. 

Input and output represent interactions between two molecules, which interact by 
performing a complementary input and output on the same channel. Can represent two 
proteins with complementary shapes, or two chemicals that are known to react with 
each other. Can also send values, such as an electron or a phosphate. Note that 3-way 
reactions are extremely rare: very low probability of three molecules reacting at exactly 
the same time. Usually two molecules interact, and then a third. Pi-calculus fits this 
model nicely. 

Often a given molecule can do more than one thing. i.e. can either react with another 
molecule or decay. Represented as a choice of actions. 

We can of course have multiple molecules in parallel. Represented as parallel 
composition. Each parallel process represents a separate molecule. 

We also want to define different types of molecules, using parameterized “macros” or 
“procedures”. These are defined in an environment. Finally, want to have private bonds, 
which are used to represent the formation of complexes.

Simulation with Stochastic π-Calculus(SPiM1):
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The Stochastic π-Calculus has been used to model and  simulate a range of biological 
systems [1,2 ]. One of the main benefits of the calculus is its ability to model large 
systems incrementally, by composing simpler models of subsystems in a intuitive way. 
Various stochastic simulators have been developed for the calculus , in order to 
perform virtual experiments on biological system models. Such in silicio experiments 
can be used to formulate testable hypothesis on the behavior of biological systems, as 
a guide to future experiments in vivo.

Currently available simulators for the stochastic π-calculus are implemented based on 
standard theory of chemical kinetics, using an adaptation of the Gillespie algorithm[3]. 
This algorithm has the distinct advantage of being mathematical exact, enabling 
accurate simulation of biological models. 

Andrew Phillips and Luca Cardelli designed a simulation algorithm (Stochastic π-Machine, 
SPiM) for the stochastic π-calculus based on standard theory of chemical kinetics 
[Gillespie 1977] where the probability of a reaction is proportional to the rate of the 
reaction times the number of reactants.

This simulator was proved and was determinate that is correct with respect to the 
stochastic π-calculus. 



Stochastic  π-Calculus in the Repressilator of Elowitz2

  
                                  Figure3

This video  shows an example of a gene network; the Elowitz's repressilator, which 
consists of three  genes that inhibit each other. The network is modelled in the 
stochastic pi- calculus, and displayed in 3D. The three genes in the model produce red, 
purple and blue proteins, respectively, where the genes are shown at the  bottom level 
and the proteins are shown at the top. The genes can be in two  states, either on or off, 
while the population of proteins can grow or shrink over  time. When the gene is 
switched on, it produces proteins at a steady rate. The  proteins can also degrade, so 
that the population of proteins stabilizes when  production and degradation are in 
equilibrium. The proteins can also interact  with the genes, switching them on or off. 
The red gene produces proteins that  switch off the purple gene, which produces 
proteins that switch off the blue  gene, which produces proteins that switch off the red 
gene, completing the  cycle. 

The video shows how the gene network can produce oscillations in protein  levels. Initially 
there is a large population of red proteins, which switch off the  purple gene (1). The 

2© 2000 Elowitz, M.B., Leibler. S. A Synthetic Oscillatory Network of Transcriptional Regulators. 
Nature 403:335-338
3 http://research.microsoft.com/~aphillip/talks/repressilator.wmv
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blue gene then starts producing proteins, which switch  off the red gene (2). Since no 
more red proteins are produced, the population  of red proteins slowly decreases over 
time, until all of the red proteins are  degraded (3). The purple gene then starts 
producing proteins, which switch off  the blue gene (4). Since no more blue proteins are 
produced, the population  of blue proteins slowly decreases over time, until all of the 
blue proteins are  degraded (5). The red gene then starts producing proteins, which 
switch off  the purple gene, completing the cycle. 

We can model the behavior of the repressilator in Stochastic Pi-Calculus language; here 
we have one gene of the three of the repressilator, modeled as follows:

Stochastic Pi-Calculus model:

g(a,b)=    ?a . g'.(a,b) 
       + Ʈt . (P(b)|g(a,b)

 g'(a.b)=   Ʈu . g(a,b)

 P(b)= !b . P(b)  
     + Ʈd . 0

And the program on the SPiM for the repressilator:

val transcribe = 0.1 val degrade = 0.001
val unblock = 0.0001  val bind=1,0

new a@bind:chan new b@bind:chan
new c@bind:chan

let Neg(a:chan,b:chan) = 
  do delay@transcribe; 
      (Protein(b) | Neg(a,b))
  or ?a; Blocked(a,b)

and Blocked(a:chan,b:chan) = 
  delay@unblock; Neg(a,b)

and Protein(b:chan) = 
  do !b; Protein(b)
  or delay@degrade

run Neg(a,b) | Neg(b,c) | Neg(c,a))

We have to highlight that elowitz's repressilator has negative logical gates at each gene.

g'(a,b)

g(a,b)

Neg(a,b)



We can see above the repressilator with the three genes represented in the graphical Stochastic pi-calculus 
diagram.

Network  construction  gives  a  high  probability  that  the  genes  oscillate  in  a  particular 
sequence.

  
 

The interactions between genes and proteins give rise to alternate oscillations in protein 
populations.

Here we have the repressilator implemented in the SPiM of Andrew Phillips. With color red 
is represented the Lac Gene, with color Blue lambda Cl Gene, with Magenta the Tet 
Gene; and with Green GFP Gene

GFP will be expressed only when  Tet is blocked; then we can see that the most of the 
times  it happens when lambda Cl is switch on.



IGEM México Construction:

Repressilator vs. UNAM's Construction

Basically in the repressilator  we can found three logical gates with negative control. Our 
construction consists of two negative gates and two positive gates.

The characteristics  of the construction are as follows:
1. We have an X Constitutive gene that inhibits LasR and LuxpR genes.
2. The lambda cl gene is then opened and begin producing the autoinductor protein 

that switch promotes LuxpR
3. When LasR is unblock, it starts parallel production of two proteins, GFP and the 

protein that activates LuxpR.
4. LuxpR gets unblock and produce at the same time RFP and the inhibitor of the 

lambda cl gene.
5. When lambda cl get blocked it won't produce anymore the protein that activates 

LasR.
6. As the gene LasR is blocked, GFP stops and the production of the protein that 

unblock LuxpR stops.
7. Then LuxpR won't produce RFP and the inhibitor of lambda cl stops producing.
8. When the inhibitor of lamda cl degrades the cycle is finished and we returned to the 

original state



We present now the model in Stochastic Pi-Calculus of our construction:

g(a,b)=  ?a . g'.(a,b) 

      + Ʈt . (P(b)|g(a,b)

g'(a.b)=  Ʈu . g(a,b)

P(b)=   !b . P(b) 

    + Ʈd . 0

g(b,c)= ?b . g'(b,c)

              + ?e.Ʈt . (P(b)|GFP()|g(a,b))

g'(b,c)=  Ʈu . (P(c)|g(b,c)|)

P(c)=  !c . P(c)

   + Ʈd . 0

GFP()= Ʈd . 0

g(c,a)=   ?c . g'(c,a)

              + ?f.Ʈt . (P(a)|RFP()|g(c,a)

g'(c,a)=  Ʈu . (P(a)|RFP()|g(c,a))

P(a)=  !a . P(a)

   + Ʈd . 0

RFP()=Ʈd . 0

X()= Ʈt . (P(e)|P(f)|X())

P(e)=  !e . P(e)

+ Ʈd . 0

P(f)=  !f . P(f)

          + Ʈd . 0

Graphical Representation of the model of our construction in Stochastic Pi-Calculus



Construction's Program Code for SPiM:

val t = 0.1          (*Decay Rate*)

val d = 0.001     (*Inhibition Rate*)

val u = 0.0001   (*Constitutive Rate*)

val bind = 1.0    (*Protein binding rate*)

let Cl(a:chan,b:chan)=

  do delay@t;(ALas(b) | Cl(a,b))

  or ?a;delay@u;Cl(a,b)

and ALas(b:chan)=

  do !b;ALas(b)

  or delay@d

new a@bind:chan

new b@bind:chan

new c@bind:chan

new e@bind:chan

new f@bind:chan

val t = 0.1      val d = 0.001    

val u = 0.0001   val bind = 1.0     

let Las(b:chan,c:chan)=

  do ?e;delay@t;(ALux(c)|GFP()|Las(b,c))

  or ?b; delay@t; (ALux(c)|GFP()|Las(b,c))

and ALux(c:chan)=

  do !c;ALux(c)

  or delay@d

and GFP()=

  delay@d

new a@bind:chan

new b@bind:chan

new c@bind:chan

new e@bind:chan

new f@bind:chan

val t = 0.1     val d = 0.001       

val u = 0.0001   val bind = 1.0      

let Lux(c:chan,a:chan)=

  do ?f;delay@t;(RCl(a)|RFP()| Lux(c,a))

  or ?c; delay@t; (RCl(a)|RFP()|Lux(c,a))

and RCl(a:chan)=

  do !a;RCl(a)

  or delay@d

and RFP()=

  delay@d

new a@bind:chan

new b@bind:chan

new c@bind:chan

new e@bind:chan

new f@bind:chan

val t = 0.1      val d = 0.001        

val u = 0.0001     val bind = 1.0       

let X()=

  delay@t;(RLas(e)|RLux(f)|X())

and RLas(e:chan)=

  do !e;RLas(e)

  or delay@d

and RLux(f:chan)=

  do !f;RLux(f)

  or delay@d

new a@bind:chan

new b@bind:chan

new c@bind:chan

new e@bind:chan

new f@bind:chan

run(Cl(a,b))

run(Las(b,c))

run(Lux(c,a))

run(X())



Figure 1 

Figure 2



Figure 3

In Figure 1 we simulates the expressions of the genes LasR, LuxpR and lambda cl.

As results of these simulation we can say that the gene lambda cl is blocked  most of the time; gene 
Las is expressed more than Gene lambda Cl. Finally gene Lux is the gene that is expressed the 
most.

Similarly,  GFP and RFP in Figure 2 are expressed; but like Lux is  highly expressed,  RFP will 
predominate on the top of the oscillations.

Figure  3  shows that  the  X gene  will  be  constant  during  the  simulation  time,  then  we  have  a 
functional circuit.

 

Conclusion:

As a conclusion of these simulations we have that our construction might be indeed functional, 

since the model predicts  particular oscillations at protein levels. We pretend to  corroborate these 

results  at  the laboratory;  and see if  the colony of engineered cells  with these construction gets 

synchronised to obtain Turing Patterns or at least another interesting pattern.
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