Paris/PROTOCOLS

From 2007.igem.org

(Difference between revisions)
(Turning on the microscope)
(Visualisation)
Line 145: Line 145:
* put a droplet of immersion oil on your slide, and attach it on the slide
* put a droplet of immersion oil on your slide, and attach it on the slide
* Journal >> Show task bar
* Journal >> Show task bar
-
* Task bar >> Trans ON/OFF : turn on the halogen lamp
+
* Task bar
-
* Move the stage with the joystick to put the objective face to your sample
+
: >> Trans ON/OFF: turn on the halogen lamp
 +
: >> Binocular/Camera: turn on the binocular or the camera
 +
: >> Choose the fiter
* Move up the objective until oil touches the slides
* Move up the objective until oil touches the slides
 +
* Turn on the binocular with trans filter
* Move up the stage with micrometric "screw" until you see your cells, or something moving
* Move up the stage with micrometric "screw" until you see your cells, or something moving
-
* Acquire >> Acquire
+
* Acquire:
-
* Image >> New !!! ( without this, each image you take will overwrite  
+
:- Digitizer (10MHz!!)
-
* Settings >> (trans ou fluo), and here you have the choice of exposure time
+
:- Image >> New !!! ( without this, each image you take will overwrite)
-
* Digitizer (10MHz!!) take care
+
:- Settings >> (trans ou fluo; choice of exposure time)
-
* Task bar >> Camera
+
* Turn on the camera (Task bar >> Camera)
-
* Acquire >> Show live
+
** Trans Image:
-
* Remember trans on off : turn trans light on
+
: Turn trans light on (Task bar >> Trans ON) and trans filter
-
* Then choose your filter (task bar)
+
: Acquire >> 100ms trans
 +
: Acquire >> Show Live
 +
: Acquire >> Acquire: acquire the trans image
 +
* Fluo image:
 +
: Task bar >> fluo filter; trans OFFOFF)
 +
:
 +
 
 +
 
* Acquire your images, etc, have fun
* Acquire your images, etc, have fun
* save your images in E:\iGEM\YYYY-MM-DD\a_proper_name
* save your images in E:\iGEM\YYYY-MM-DD\a_proper_name

Revision as of 14:04, 19 July 2007

For newcomers in wetlab: see also the course by D. Endy Laboratory Fundamentals of Biological Engineering.

Contents

Getting started


This topic is adressed to all our informatics-physics-I'm-afraid-of-the-bench fellows. So, if you finally found the courage to dare the pipettes, PCRs and nicely smelling bacteria, welcome!

  • What a pipette is?

Pipette RAININ.jpg
Pipettes dispense various volumes. The plunger button indicates the maximum volume (microliters) that the pipette is designed to handle. For example, P-20 will handle up to 20 microliters.
The digital volume indicator is read from top to bottom. For P-2, P-10, P-20, P-100, and P-200, black digits indicate microliters and red digits tenths and hundredths of microliters. For P-1000, red digits indicate milliliters and black digits microliters.

What to do when you have it in you hand?

-Hold the pipette in one hand (it doesn't bite...). With the other hand, turn the volume adjustment knob counterclockwise so the volume indicator is 1/3 revolution above the desired setting, then slowly turn clockwise until the indicator shows the desired volume.
-Attach a new disposable tip to the pipette shaft.
-Press the plunger to the FIRST stop. This part of the stroke is the volume displayed by the indicator.
-Holding the pipette vertically, immerse the tip a few millimeters into the sample.
-Allow the pushbutton to return slowly to the UP position. Avoid to blurt out the plunger button abruptly : there are bulls appearing and your volume is false...
-Ensure that the full volume of sample was properly drawn into the tip.
-Withdraw the tip from the sample.
-To dispense the liquid, gently touch the tip to the side of the receiving vessel, immersing the tip into liquid within the vessel. Press the plunger to the SECOND stop.
-With the plunger fully pressed, withdraw the tip carefully, wiping residual drops against the vessel wall.
-Allow plunger to return to the UP position.
-Discard the tip by depressing the tip ejector button.

Note down that different tips exist : ensure that you have the right one (labels will indicate you the size, etc.). It's better to use filter tips.
To train, you can simply pipette water : it's important to know how much 1 µl is...

To be continued...


  • Growing bacteria in liquid medium


-Light the Bunsen burner. It permits you to keep a 10 cm perimeter sterile et thus not to contaminate your future colonies.
-Get a 50mL Falcon tube and put into 5 mL of LB medium. Add supplementary stuff if needed (antibiotics, metabolites, etc.).
-Pick up a sterile toothpick. Use it to gather a single colony of cells (you know, a white point on your Petri dish...).
-Place the toothpick with the colony into the solution.
-Incubate overnight at 37°C with shaking (at about 200 rpm).

Next morning, after a cup of coffee and a croissant, you can check up Culture liquide bact.jpg.
<<home

Strains

Here you can find the list of strains we have.

E. Coli MG1655

WT

E. Coli w121

We got the w121 strain from a lab in Pasteur Institute. This strain is [DapA-; Erythromycin R], but also has a couple of other mutations we are not interested in.

E. Coli Ftsz -TS84

Three clones are available : 121.1, 121.2, 121.3. More details soon

Acinetobacter

Transduction with P1 bacteriophage

Preparation of the P1 stock on the w121 strain.

Step of Tuesday, July 3

To be completed...

Transduction to MG1655 using the P1 stock made on w121.

Step of Wednesday, July 4

To be completed...

Titration of bacteriophages

  • Take your stock of bacteriophage
  • make several dilution of your stock, for example :
    • 10µL of stock in 990µL MgSO4 0.1M -> d2
    • 10µL of former solution in 990µL MgSO4 0.1M ->d4
    • 10µL of former solution in 990µL MgSO4 0.1M ->d6
    • 10µL of former solution in 990µL MgSO4 0.1M ->d8
  • In a petri dish containing LB, spread a solution of 100µL of E. Coli MG1655 in stationnary phase + warm top agar 900µL (TA,7)
  • Spread this mix over a petri dish
  • add droplets (7µL) of your phages dilution on the petri dish, mark the places where you put these droplets
  • Incubate ON at 37°C
  • check for lyse plaque

Preparation of DAP solution from the powder (50mM)

Step of Friday, July 6

  • M(DAP)=190.2g/mol
  • I put 0.285g of DAP in 30ml water
  • Aliquoted by 15ml
  • Stored in the freezer at -20°C
  • the stock is 166x

Preparing growth media

Making 10 petri dish (LB+tet+citrate+DAP)

  • take 250ml of LB
  • warm it up in the microwave for ~ 6min
  • wait until you can handle the bottle for 2sec
  • add 5ml of citrate 1M
  • add 1.5ml of DAP
  • add 250µL of tetracycline (stored in freezer at 1000x)
  • spread the medium in about 10 petri dish

Making 10 petri dish (LB+erythromycin+citrate+DAP)

  • take 250ml of LB
  • warm it up in the microwave for ~ 6min
  • wait until you can handle the bottle for 2sec
  • add 5ml of citrate 1M
  • add 1.5ml of DAP
  • add 1.9mL of erythromycin (stored in the freezer at 133x)
  • spread the medium in about 10 petri dish

Fluorescent single cells visualisation

Slide preparation

  • Make LB-agarose : 0.15g of agarose in 10ml LB
  • warm it up in the microwave (a lot!!, to avoid cristal of agarose that could remain in the gel => ugly over microscope)
  • wash the slide (special slide with "two holes" with ethanol)
  • put ~80µL of LB-agarose in each hole
  • spread the gel with another slide and wait for ~2 min
  • remove extra gel with a cutter
  • put a droplet on the gel:
  • if you have a solid culture:
- pick up some colonies
- suspend within 100µL liquid medium (M9)
- put 1-2 µL on the gel
  • if you have an avernight liquid culture:
- take 1mL of the culture
- centrifugate 1000 rpm 1 min
- resuspend into 150 µL of medium (M9)
- put 1-2 µL on the gel slide
  • spread it by moving the slide
  • wait until you don't see the droplet anymore (2min)
  • put a coverslip and attach it with nailpolish
  • optionally : you can put wax around

Turning on the microscope

  • turn on : the light, the microscope, the shutter, the joystick
  • launch Metamorph
  • turn up the condenser and the objectives in load position
  •  !! take care : not keeping the light on if we doesn't use it
  •  !! do not switch on short after
  • wait 5 min (the microscope is checking the ranges of movement

Visualisation

  • put a droplet of immersion oil on your slide, and attach it on the slide
  • Journal >> Show task bar
  • Task bar
>> Trans ON/OFF: turn on the halogen lamp
>> Binocular/Camera: turn on the binocular or the camera
>> Choose the fiter
  • Move up the objective until oil touches the slides
  • Turn on the binocular with trans filter
  • Move up the stage with micrometric "screw" until you see your cells, or something moving
  • Acquire:
- Digitizer (10MHz!!)
- Image >> New !!! ( without this, each image you take will overwrite)
- Settings >> (trans ou fluo; choice of exposure time)
  • Turn on the camera (Task bar >> Camera)
    • Trans Image:
Turn trans light on (Task bar >> Trans ON) and trans filter
Acquire >> 100ms trans
Acquire >> Show Live
Acquire >> Acquire: acquire the trans image
  • Fluo image:
Task bar >> fluo filter; trans OFFOFF)


  • Acquire your images, etc, have fun
  • save your images in E:\iGEM\YYYY-MM-DD\a_proper_name

NB : Nile Red, choose mRFP1/TexasRed filter <<home