Works top  0.Hybrid promoter  1.Formulation  2.Assay  3.Simulation  4.Assay2  5.Future works

Step1.toggle model

<イントロ> まずは,次元をもっていない単純な式で定性的な振る舞いをみてみる. その結果,安定点が1つのときと2つのときがある.我々が求めているモデルはA状態とB状態をとる必要があるので, 安定点が二つのときである.bistalbeになるには,パラメータにおいて,合成rateの強さ比とヒル係数が重要であることが分かった.

Step2.toggle model with hybrid promoter

<イントロ> ハイブリットプロモータを式に入れ込む必要がある. トグルの抑制項に加えてAHLによってactivateされる項が加わる. これにより,AHL量によって相平面変化するようになる. AHL量が少ないときはmonoで多いときトグルと同じになりbiになる.


Step3.AHL-experssing model

<イントロ> 今度は,大腸菌の中からAHLを作り出す系に拡張する. すると,nullclineが非対称になり,従来のトグルとは異なった相平面になる. この際,新たなパラメータλが入ってくる. パラメータセットによって,monoになったり,biになったりする. Now develop this system to the one with cell-produced AHL. This time, the nullcrine is assymetric and the phaseplane is unconventionally shaped. Here the new parameter λ is introduced whether mono or bi of the system depends on the parameter sets for more detail
Phaseplane3-1.jpg Phaseplane3-2.jpg Phaseplane3-3.jpg

Step4.population model

<イントロ> 1個体から複数個体に拡張.AHLの式は,AHLの移動がfreelyと論文にあるので大腸菌内と外とを区別していない ここでも,相平面解析を行った.n個体の振る舞いであっても,その中の1個体に着目することで相平面解析を可能にした. この際,新たなパラメータとして個体数nがはいってくる.

Here the concentration of AHL is assumed the same inside and outside of a cell according to the description that AHL is freely permiable through cell membrane in the referenced articles. In the phaseplane analysis here is mede possible by focusing on an individual in the whole. In this case, the parameter n for the number of the cells is introduced.

ただし,deterministicなため全個体同じ動き.我々のモデルはこれではみれない. stochasticなシミュレーションが要求される.

However, all the individuals behave in the same way in this deterministic model. To see the bahavior different from each individual, it is necessary to use stocastic simulation.

Step5.poisson stochastic differential equation model