

Undergraduates:

Samhita Benavar, Noah Johnson, George Khoury, Galen Lynch, Garrett Tobin, Lucien Weiss Advisors:

> Drs. Patrick Cirino, Megan Marshall, Tom Richard, Paul Weiss

Diauxie Elimination: Increasing bioenergy efficiency

Bio-Dosimeter : Bacterial Radiation Sensing

Diauxie Background

- Traditional energy sources are not sustainable
- Biomass is a renewable resource
- Process still not efficient enough to be widely used

bioreactor

Diauxie Background

 Diauxie – cells growing in sugar mixtures will metabolize them one at a time.

Eliminating Diauxie

• Eliminating Diauxie could increase the efficiency of bioreactors..

Part Name	Bio-Brick Number	Status
XylR	BBa_1741005	Submitted
F Promoter w/ CRP site	BBa_1741018	Submitted
A Promoter w/ CRP site	BBa_1741019	PCR Complete
F Promoter	BBa_1741020	PCR Complete
A Promoter	BBa_1741021	PCR Complete
CRP*	BBa_1741023	Cloned 🧹

Constructs	Bio-Brick Number	Status
HSL Detector	BBa_1741001	Available + Working
IPTG Detector	BBa_1741002	Available + Working
HSL Producer	BBa_1741003	Available + Working
XylF Promoter + Reporter	BBa_1741102	Ligated 🧹

Introduction: Dosimetry

- Exposure to radiation or radioactive material must be quantified to avoid harmful/lethal doses of radiation
- For individuals with high exposure, electrometer dosimeter pen is an expensive and accurate way to measure dose
- Relatively Inexpensive photographic or thermoluminescent dosimeter badges also exist

Expanding Need for Dosimeters

- Expanding need for radiation detection
 - Homeland security
- Possible exposure to radioactive material
 - Yucca Mountain
- Organisms could be used as a first warning dosimeter
- A biological dosimeter would be cheap, easy to read, easy to maintain, but probably inaccurate

Theory of a Bio-Dosimeter

- Radiation's harmful effects stem from the genetic damage caused by ionizing radiation
- Biological organisms already have very advanced genetic repair mechanisms
- Most direct implementation of a biosensor would monitor the genetic damage accumulated by a bacterial cell and emit a signal after a critical threshold

- Genetic Damage to bacterial host triggers λ lysogen's entrance into lytic phase
 - Bacterial RecA recognizes mutations, cleaves λ repressor
- By utilizing key regions of the λ genome, we assemble a dosimeter 'switch' that would throw after a certain dosage of radiation

The λ Control Region

- The lambda phage maintains lysogeny through a single bidirectional operator (O_R)
 - Operator is controlled by two proteins that bind to three sites ($O_R 1$, $O_R 2$, and $O_R 3$)
- O_R contains two promoters P_{RM} and P_R that transcribe a repressor (CI) and anti-repressor (Cro), respectively

Threshold adjustment with RBS Strength

- Trigger on cellular level is all or nothing
- Test different Cro RBS strengths to set the threshold dose
 - Maximum repressor/antirepressor concentration will not change, only replacement rate

- Readable in most lighting conditions
- Output could be changed for different applications

Progress

Part Name	Bio-Brick Number	Status
Repressor CI (no LVA)	BBa_1741110	Ligated 🧹
Antirepresor Cro	BBa_1741111	Ligated 🧹
O _R	BBa_1741109	Ligated 🧹

Acknowledgements

Project ad

Drs. Ming Tien, Darryl Farber, William Hancock

The Penn State iGEM team has been generously supported by:

- DuPont
- Invitrogen
- Penn State Office of Dean of Undergraduate Research
- Penn State Huck Institute of the Life Sciences
- Eberly College of Science
- Department of Ag and Bio Engineering
- Department of Chemical Engineering
- Department of Bioengineering
- Department of Chemistry
- Penn State Materials Research Institute
- National Science Foundation through PSU Center for Nanoscale Science
- The TEAS Scholarship Fund
- Registry of Standard Biological Parts
- National Cancer Institute