BerkiGEM2007 WikiPlaying2
From 2007.igem.org
Line 70: | Line 70: | ||
<p> </p> | <p> </p> | ||
<p> <img src="https://static.igem.org/mediawiki/2007/d/d3/Berk-DT_Figure_Legend.png" alt="" name="" width="344" height="285" align="right"></p> | <p> <img src="https://static.igem.org/mediawiki/2007/d/d3/Berk-DT_Figure_Legend.png" alt="" name="" width="344" height="285" align="right"></p> | ||
+ | <p> </p> | ||
+ | <p> </p> | ||
+ | <p> </p> | ||
<p> </p> | <p> </p> | ||
<p> </p> | <p> </p> |
Revision as of 22:02, 26 October 2007
<<< Return to UC Berkeley iGEM 2007
<<Previous Section: Chassis | Next Section: Genetic Self-Destruct>>
The Controller
The Controller is an integrated genetic circuit, comprised of two plasmids, that directs the copy number and transcription of the primary devices in our system.
Introduction
The Bactoblood organism needs to exist in two different states: one form that is genetically stable and able to grow under normal laboratory conditions, and a second state that is highly differentiated, unable to grow, and devoid of genetic material. To bring about the transformation to the differentiated state, we needed a controller that could be easily triggered by an external cue. This controller required a large dynamic range between the off and on states, the ability to maintain and overexpress a large number of genes, and ideally employed a low-cost inducer. Therefore, we designed a controller based on a two plasmid system. One plasmid stably replicates the various biosynthetic operons of our system at single copy in a transcriptionally-inactive state. The second plasmid houses the genes necessary for activation of the operon plasmid. When activated with iron, the copy number of the operon plasmid increases to high-copy and the transcription of the operons is activated.
Design and construction
We designed a two-plasmid architecture in which the biosynthetic operons reside on a single-copy bacterial artificial chromosome (BAC). The operons are under the transcriptional control of T7 promoters of various strengths. The BAC also contains an R6K origin of replication. In most strains of E. coli, this origin is silent as it requires the expression of the pir gene for replication. The second plasmid in our controller is a low-copy pSC101-derived plasmid that houses the T7 RNA polymerase and pir genes under the control of an iron-inducible promoter.
Construction of an iron-responsive PoPS-generating device
To construct this system, first we needed a promoter that was induced by iron. Microarray studies suggested that the yfbE promoter of E. coli might function as an iron-responsive PoPS-generating device. We therefore constructed a Biobrick derived from the yfbE promoter and constructed an RFP reporter composite part derived from this basic part. We examined the fluorescence of cells harboring this part both as a function of external iron concentration and growth phase. The yfbE promoter part had the ideal qualities for our controller: it is induced 100-fold as the bacteria emerge from the mid-log phase of growth, but only in the presence of exogenous iron.
Vectorology of the iron promoter characterization construct (To the top)
An iron-inducible promoter(To the right): Cells were transformed with an RFP transcriptional reporter device derived from our yfbE promoter part and grown with or without exogenous iron to various densities and then analyzed for fluorescence by cytometry.
Construction of an iron-dependent transcription device
Construction of an iron-dependent copy number device
Conclusion