UCSF/Organelle Intro
From 2007.igem.org
(Difference between revisions)
Line 9: | Line 9: | ||
|[[Image:Picture_34.png]]|| '''The endogenous system in yeast has a membrane associated mating-pathway receptor wchih binds a ligand (mating pheromone). After ligand binding, the receptor-phermone complex is endocytosed. After endocyctosis, an endogenous kinase phosphorylates the yet untagged phosphoinositide on the 3’ position. As the early endosome is absorbed into the late endosome, a second endogenous kinase phosphorylates the 5’ position, resulting in a PI[3,5]P2 tagged endosome. This endosome is recognized by the vacuole, and is then targeted by its merger machinery for lysis.''' | |[[Image:Picture_34.png]]|| '''The endogenous system in yeast has a membrane associated mating-pathway receptor wchih binds a ligand (mating pheromone). After ligand binding, the receptor-phermone complex is endocytosed. After endocyctosis, an endogenous kinase phosphorylates the yet untagged phosphoinositide on the 3’ position. As the early endosome is absorbed into the late endosome, a second endogenous kinase phosphorylates the 5’ position, resulting in a PI[3,5]P2 tagged endosome. This endosome is recognized by the vacuole, and is then targeted by its merger machinery for lysis.''' | ||
|- | |- | ||
- | |[[Image:Picture_35.png]]||'''In our strategy, human or worm MTM will be recruited to the membrane receptor of the mating pathway (Ste2). Pathway induction with mating pheromone (alpha factor) results in endocytosis of the receptor (and therefore the recruited MTM). Once in the late endosome, the MTM will convert | + | |[[Image:Picture_35.png]]||'''In our strategy, human or worm MTM will be recruited to the membrane receptor of the mating pathway (Ste2). Pathway induction with mating pheromone (alpha factor) results in endocytosis of the receptor (and therefore the recruited MTM). Once in the late endosome, the MTM will convert PI[3,5]P2 into PI[5]P, leading to Ste2-specific PI[5]P-tagged endosomes. These endosomes are expected to be stable, for they are unlikely to be recognized by the vacuole merging machinery.''' |
|} | |} |