Boston University

From 2007.igem.org

(Difference between revisions)
(Our Project Plan)
(Our Project Plan)
Line 13: Line 13:
== Our Project Plan ==
== Our Project Plan ==
-
Our project is aimed at increasing current production from [http://www.shewanella.org/ Shewanella Oneidensis] by directed evolution of global transcription factors.
+
Our project is aimed at increasing current production from [http://www.shewanella.org/ Shewanella oneidensis] by directed evolution of global transcription factors.
Our plan so far:
Our plan so far:

Revision as of 23:30, 29 May 2007

Contents

About Us

Welcome to the wiki for Boston University's iGEM 2007 team!


Our team consists of David Shi, Rahul Ahuja, Christian Ling, and Danny Bellin, all soon-to-be juniors majoring in Biomedical Engineering at Boston University.


We are advised by [http://www.bu.edu/dbin/bme/faculty/?prof=tgardner Dr. Timothy Gardner], Assistant Professor of Biomedical Engineering, as well as Frank Juhn and Stephen Schneider, students in the [http://www.gardnerlab.bu.edu Gardner Laboratory], where we work. We are grateful to our advisors for their time and support!


We are also grateful to Pfizer for their generous support of our team.

Our Project Plan

Our project is aimed at increasing current production from [http://www.shewanella.org/ Shewanella oneidensis] by directed evolution of global transcription factors.

Our plan so far:

  1. Mutate global transcription factors
    1. Design primers for amplification
    2. Perform error-prone PCR
  2. Transform mutated genes into E. coli
    1. Choose plasmids
    2. Restriction enzyme digestion
    3. Ligation
    4. Transformation into E. coli
  3. Conjugate E. coli with Shewanella
  4. Screen/select Shewanella strains for increased current production due to mutations. Potential methods:
    1. A...ose beads and fluorocytometer
    2. Metallo-Antibiotics
    3. (DB's random idea): Could we take advantage of spectrophotometry? Perhaps we could split our collection of mutants into different groups, measure their absorbances with spectrophotometry, and assume that the sample with the lowest absorbance contains mutants producing more electricity and therefore growing slower. We could then split this sample into different groups and repeat. While there might be some inefficient strains in the successful broth samples, on the whole, the broth might be a good one for use in a fuel cell. Problem: Low absorbance could be due to mutants losing viability. Potential Solution: Let initial sample grow for a while so all mutants unable to grow will die off, all mutants able to grow will thrive, and then perform the screen.

Week's (Ambitious) Goals

Wednesday 5/30

  1. Get all protocols
  2. Identify materials/prepare order
  3. Design Primers
  4. Learn about budget/POs

Thursday 5/31

  1. Do primer order
  2. Start conjugation practice
  3. Confirm restriction enzymes, ligases
  4. Order confirmed/needed materials
  5. Team Revew Meeting

Friday 6/1

  1. Evaluate/continue conjugation, practice electroporation for E. coli
  2. Meeting with Tim: Budgets/protocols, Pfizer/fundraising, iGEM registration, beads


What We've Accomplished

Well we're basically finished. I mean, cloning's been done a billion times, so this should be a piece of cake...I think.

Materials We Need

Primers: Need to Buy

Error-Prone PCR: Need to Buy

Plasmids: Need to Buy?

Restriction Enzymes: Need to Buy?

Ligases: Need to Buy?

Short-Term To-Do List

Lab Orientation: Completed

Design of Primers: Not Completed

Ordering of Primers: Not Completed

Gathering of Protocols: Not Completed

Ordering of Error-Prone PCR Materials: Not completed