Berkeley UC

From 2007.igem.org

(Difference between revisions)
Line 70: Line 70:
<td class="tddesc"><b><a href="https://2007.igem.org/BerkiGEM2007Present4">The Chassis</a></b><p><i>Our bacterial  
<td class="tddesc"><b><a href="https://2007.igem.org/BerkiGEM2007Present4">The Chassis</a></b><p><i>Our bacterial  
chassis has been heavily modified to remove its  
chassis has been heavily modified to remove its  
-
sepsis-inducing toxicity, as well as promote its ability to  
+
sepsis-inducing toxicity, growth within the bloodstream,
-
last longer in the bloodstream by masking it from the immune  
+
as well as promote its ability to last longer
-
system.&nbsp; We performed this by lipopolysaccharide
+
in the bloodstream by masking it from the immune  
-
modifications as well as adding the K-capsule and O-antigen.</i></td>
+
system.</i></td>
</tr>
</tr>
<tr>
<tr>
Line 100: Line 100:
<td class="tddesc"><b><a href="https://2007.igem.org/BerkiGEM2007Present2">Freeze Drying</a></b><p><i>In order to  
<td class="tddesc"><b><a href="https://2007.igem.org/BerkiGEM2007Present2">Freeze Drying</a></b><p><i>In order to  
enable preservation of our bacteria for long time periods,  
enable preservation of our bacteria for long time periods,  
-
we have included the ability to produce compounds, such as
+
we are including the ability to produce the compounds  
-
hydroxyectoine, that will enable our bacteria to survive
+
hydroxyectoine and trehalose, that will enable our bacteria to  
-
freeze-drying intact.&nbsp; This will dramatically increase
+
survive freeze-drying intact.&nbsp; This will dramatically  
-
shelf-life and decrease transport costs.</i></td>
+
increase shelf-life and decrease transport costs.</i></td>
</tr>
</tr>
</table>
</table>

Revision as of 14:20, 12 October 2007

 
UC Berkeley iGEM 2007

BactoBlood

The necessity of inexpensive, available, disease free, and universally compatible blood substitutes is undisputed. There are currently no blood substitutes approved for use in the US or the UK, and whole blood is almost always in short supply. Developing countries have the greatest need for blood transfusions, however many lack the necessary donation and storage infrastructure and the required number of healthy donors. To address this problem, we are developing an innovative and cost-effective blood substitute constructed from E. coli bacteria engineered to include the critical capabilities of human erythrocytes. Our bacterial system includes the ability to safely exist in the bloodstream, carry oxygen with hemoglobin, and be stored for prolonged periods in a freeze-dried state.

Support for Berkeley iGEM 2007 was generously provided by SynBERC and The Camille and Henry Dreyfus Foundation, Inc.


 

Project Modules

Oxygen Carrying

Our system is designed to produce Hemoglobin, Heme, and the necessary chaperones and detoxifying agents to promote the transport of oxygen throughout the bloodstream.  We also investigated alternates to hemoglobin and other strategies for its production.

The Chassis

Our bacterial chassis has been heavily modified to remove its sepsis-inducing toxicity, growth within the bloodstream, as well as promote its ability to last longer in the bloodstream by masking it from the immune system.

The Controller

The Controller is an integrated genetic circuit, comprised of two plasmids, that directs the initiation and production of the primary systems proteins through its component operons.  It is composed of a pSC101 controller plasmid and an amplifiable BAC utilizing the T7 RNAP expression system.

Genetic Self-Destruct

To prevent chance of infection or unwanted proliferation after hemoglobin production, we have engineered a genetic self-destruct mechanism whereby when induced, the bacterial cell will express a genetic material-degrading toxin which kills the cell, but leaves it physically intact.

Freeze Drying

In order to enable preservation of our bacteria for long time periods, we are including the ability to produce the compounds hydroxyectoine and trehalose, that will enable our bacteria to survive freeze-drying intact.  This will dramatically increase shelf-life and decrease transport costs.


Team Members

Advisors
John Dueber Christopher Anderson Adam Arkin Jay Keasling

Teaching Assistants
Farnaz Nowroozi Amin Hajimorad Rickey Bonds

Undergraduate Researchers
Arthur Yu Austin Day David Tulga Kristin Doan Samantha Liang Vaibhavi Umesh Kristin Fuller

High School Students
Vincent Parker Nhu Nguyen Hannah Cole


Team Resources



Presentation Setup

Oligo List Spreadsheet
CloneSaver Spreadsheet
Our BioBrick Parts
All construction files
All sequencing files


Tools and Guides

Biobricks and Cloning Tutorials
Pairwise Alignment Online
Multiple Sequence Alignment
Wiki Formatting Guide


Useful Links

UC Berkeley iGEM 2006 OpenWetWare
UC Berkeley iGEM 2006 wiki
iGEM wikis: 2006, 2007
Registry of Standard Biological Parts
Biobricks Parts Lists: 2005, 2006, 2007
Tutorials

Team Notebooks



John Dueber Notebook
Christopher Anderson Notebook
Farnaz Nowroozi Notebook
Amin Hajimorad Notebook
Rickey Bonds Notebook


Keep your wiki notebooks, sequencing/construction logs, and the registry updated!


Arthur Yu's 1337 Notebook
Austin Day Notebook
David Tulga's Notebook
Kristin Doan Notebook
Samantha's Notebook (June - July 19, 2007
Samantha's Notebook (July 20, 2007 - present)
Vaibhavi Umesh Notebook
Kristin Fuller Notebook


Vincent Parker Notebook
Nhu Nguyen Notebook
Hannah Cole Notebook