ETHZ/Intro Tim
From 2007.igem.org
(Difference between revisions)
(→'''.:: System Explanation ::.''') |
|||
Line 9: | Line 9: | ||
* ''Ω'' : ''Q'' × Σ → Λ - an output function | * ''Ω'' : ''Q'' × Σ → Λ - an output function | ||
- | In detail, ''δ'' | + | In detail, the transition function ''δ'' and the output function ''Ω'' look as follows: |
- | {| class="wikitable" | + | {| class="wikitable" border="1" cellspacing="0" cellpadding="2" style="text-align:left; margin: 1em 1em 1em 0; background: #f9f9f9; border: 1px #aaa solid; border-collapse: collapse;" |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
|- | |- | ||
+ | ! inputs/states !! ''q''<sub>0</sub> !! ''q''<sub>1</sub> !! ''q''<sub>2</sub> !! | ||
! inputs/states !! ''q''<sub>0</sub> !! ''q''<sub>1</sub> !! ''q''<sub>2</sub> | ! inputs/states !! ''q''<sub>0</sub> !! ''q''<sub>1</sub> !! ''q''<sub>2</sub> | ||
|- | |- | ||
+ | ! AL || ''q''<sub>1</sub> || ''q''<sub>1</sub> || ''q''<sub>1</sub> || | ||
! AL || nothing || || | ! AL || nothing || || | ||
|- | |- | ||
+ | ! A || ''q''<sub>0</sub> || ''q''<sub>1</sub> || ''q''<sub>2</sub> || | ||
! A || || red || cyan | ! A || || red || cyan | ||
|- | |- | ||
+ | ! BL || ''q''<sub>2</sub> || ''q''<sub>2</sub> || ''q''<sub>2</sub> || | ||
! BL || nothing || || | ! BL || nothing || || | ||
|- | |- | ||
+ | ! B || ''q''<sub>0</sub> || ''q''<sub>1</sub> || ''q''<sub>2</sub> || | ||
! B || || green || yellow | ! B || || green || yellow | ||
|- | |- | ||
|} | |} | ||
+ | |||
The resulting automaton is represented by Fig. 1. | The resulting automaton is represented by Fig. 1. |
Revision as of 12:27, 16 October 2007
.:: System Explanation ::.
The proposed system is best described by a Mealy machine [http://en.wikipedia.org/wiki/Mealy_machine Mealy machine], a special type of [http://en.wikipedia.org/wiki/Finite_state_machine finite state machines] (FSM). Mealy machines are described by a 6-tuple, (Q, q0, Σ, Λ, δ, Ω), with:
- Q - a set of states, for the proposed system we use three different states (q0 - not yet trained, q1 - trained to recognize chemical A, q2 - trained to recognize chemical B)
- q0 - a start state, here we assume we start in a state where the system is not yet trained
- Σ = {AL, A, BL, B} - an input alphabet
- Λ = {green, red, cyan, yellow, nothing} - an output alphabet
- δ : Q × Σ → Q - a state transition function
- Ω : Q × Σ → Λ - an output function
In detail, the transition function δ and the output function Ω look as follows:
inputs/states | q0 | q1 | q2 | inputs/states | q0 | q1 | q2 | |
---|---|---|---|---|---|---|---|---|
AL | q1 | q1 | q1 | AL | nothing | |||
A | q0 | q1 | q2 | A | red | cyan | ||
BL | q2 | q2 | q2 | BL | nothing | |||
B | q0 | q1 | q2 | B | green | yellow |
The resulting automaton is represented by Fig. 1.