Waterloo

From 2007.igem.org

(Difference between revisions)
(Binary Addition)
Line 9: Line 9:
When working in binary, only two digits are used: 0 and 1. Counting therefore proceeds as:  
When working in binary, only two digits are used: 0 and 1. Counting therefore proceeds as:  
-
0: 0
+
# 1
-
1: 1
+
# 10
-
2: 10
+
# 11
-
3: 11
+
# 100
-
4: 100
+
# 101
-
5: 101
+
# 111
-
6: 111
+
etc.
etc.
To add two binary numbers, the process is much the same as adding two decimal (ordinary) numbers, except that instead of carrying when two digits add to ten, carrying must be performed when two digits add to two. In other words, 0 + 1 adds to 1, but 1 + 1 adds to 0 with a carry of 1, which gives 10 (just as in decimal 1 + 9 would add to 0 with a carry of 1, to give 10).
To add two binary numbers, the process is much the same as adding two decimal (ordinary) numbers, except that instead of carrying when two digits add to ten, carrying must be performed when two digits add to two. In other words, 0 + 1 adds to 1, but 1 + 1 adds to 0 with a carry of 1, which gives 10 (just as in decimal 1 + 9 would add to 0 with a carry of 1, to give 10).
 +
===Half Adder===
===Half Adder===
===DNA as Logic Gates===
===DNA as Logic Gates===

Revision as of 17:36, 21 October 2007

UWLogo.jpg University of Waterloo iGEM Team

Contents

Our Team

The UW iGEM team is a very interdisciplinary group. Our team members span the three faculties of Science, Mathematics and Engineering and include the programs of Biology, Biomedical Sciences, Computer Science, Bioinformatics, Computer Engineering, Electrical Engineering, Chemical Engineering, and Mathematical Physics at undergraduate and graduate levels. Even our professor advisors are cross-appointed to two other faculties. Our diverse backgrounds bring together a wide range of skills and ideas to the iGEM project. iGEM is giving us the opportunity to apply the skills learned in our lectures and labs to real life applications in molecular biology and biotechnology.

Abstract

Background

Binary Addition

When working in binary, only two digits are used: 0 and 1. Counting therefore proceeds as:

  1. 1
  2. 10
  3. 11
  4. 100
  5. 101
  6. 111

etc.

To add two binary numbers, the process is much the same as adding two decimal (ordinary) numbers, except that instead of carrying when two digits add to ten, carrying must be performed when two digits add to two. In other words, 0 + 1 adds to 1, but 1 + 1 adds to 0 with a carry of 1, which gives 10 (just as in decimal 1 + 9 would add to 0 with a carry of 1, to give 10).

Half Adder

DNA as Logic Gates

Project Details

Inputs (stimuli and the genes used to detect them)

Output (observable change and what it represents)

Gene Diagram

Testing/Results

Mathematical Model

Measurements

Extensions

Full Adder

==Acknowledgements== (Sponsor logos)