Princeton/literature

From 2007.igem.org

< Princeton(Difference between revisions)
 
Line 31: Line 31:
Masiero, Massimo, et al.  RNA interference: Implications for cancer treatment.  Molec. Aspects. Med. ; 2007; 28:143:166. <br><br>
Masiero, Massimo, et al.  RNA interference: Implications for cancer treatment.  Molec. Aspects. Med. ; 2007; 28:143:166. <br><br>
 +
 +
==Mutant integrase==
 +
* HIV-1 replication is controlled at the level of T cell activation and proviral integration (Stevenson et al., EMBO Journal, 1990)
 +
* Active Nuclear Import of Human Immunodeficiency Virus Type 1 Preintegration Complexes (Bukrinsky et al., PNAS, 1992)
 +
* Human Immunodeficiency Virus Type 1 Integrase Mutants Retain In Vitro Integrase Activity yet Fail To Integrate Viral DNA Efficiently during Infection (Leavitt et al., Journal of Virology, 1996)
 +
* Mutations in the Human Immunodeficiency Virus Type 1 Integrase D,D(35)E Motif Do Not Eliminate Provirus Formation (Gaur and Leavitt, Journal of Virology, 1998)
 +
* Transient Gene Expression by Nonintegrating Lentiviral Vectors (Nightingale et al., Molecular Therapy, 2006)
 +
* HIV-1 gene expression: lessons from provirus and non-integrated DNA (Wu, Retrovirology, 2004)
 +
* Stochastic Gene Expression in a Lentiviral Positive-Feedback Loop: HIV-1 Tat Fluctuations Drive Phenotypic Diversity (Weinberger et al., Cell, 2005)
 +
 +
==Kozak sequences==
 +
* Point Mutations Define a Sequence Flanking the AUG Initiator Codon That Modulates Translation by Eukaryotic Ribosomes (Kozak, Cell, 1986)
 +
* At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells (Kozak, Journal of Molecular Biology, 1987)

Latest revision as of 03:41, 27 October 2007

Literature on RNAi and Cancer

Rinaudo K, et al. A universal RNAi-based logic evaluator that operates in mammalian cells. Nat Biotechnol. 2007 Jul;25(7):795-801.

Schwarz, D.S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., Zamore, P.D., 2003. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115 (2), 199–208.

Nykanen, A., Haley, B., Zamore, P.D., 2001. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107 (3), 309–321.

Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R., Tuschl, T., 2002. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110 (5), 563–574.

Zamore, P.D., Tuschl, T., Sharp, P.A., Bartel, D.P., 2000. RNAi: double-stranded RNA directs the ATP dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101 (1), 25–33.

Dykxhoorn, D.M., Novina, C.D., Sharp, P.A., 2003. Killing the messenger: short RNAs that silence gene expression. Nat. Rev. Mol. Cell Biol. 4 (6), 457–467.

Miyagishi, M., Taira, K., 2002. U6 promoter-driven siRNAs with four uridine 30 overhangs efficiently suppress targeted gene expression in mammalian cells. Nat. Biotechnol. 20 (5), 497–500.

Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 2004;101:2999–3004.

Yoshinari K, Miyagishi M, Taira K. Effects on RNAi of the tight structure, sequence and position of the targeted region. Nucleic Acid Res. 2004;32:691–699.

Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003;115:209–216.

Schwarz DS, Hutvagner G, Du T, et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell. 2003;115: 199–208.

Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference.Nat Biotechnol. 2004;22: 326–330.

Ui-Tei K, Naito Y, Takahashi F, et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 2004;32:936–948.

Izquierdo, Marta. Short Interfereing RNAs as a tool for Cancer Gene Therapy. Cancer Gene Therapy 2005; 12:217-227.

Masiero, Massimo, et al. RNA interference: Implications for cancer treatment. Molec. Aspects. Med. ; 2007; 28:143:166.

Mutant integrase

  • HIV-1 replication is controlled at the level of T cell activation and proviral integration (Stevenson et al., EMBO Journal, 1990)
  • Active Nuclear Import of Human Immunodeficiency Virus Type 1 Preintegration Complexes (Bukrinsky et al., PNAS, 1992)
  • Human Immunodeficiency Virus Type 1 Integrase Mutants Retain In Vitro Integrase Activity yet Fail To Integrate Viral DNA Efficiently during Infection (Leavitt et al., Journal of Virology, 1996)
  • Mutations in the Human Immunodeficiency Virus Type 1 Integrase D,D(35)E Motif Do Not Eliminate Provirus Formation (Gaur and Leavitt, Journal of Virology, 1998)
  • Transient Gene Expression by Nonintegrating Lentiviral Vectors (Nightingale et al., Molecular Therapy, 2006)
  • HIV-1 gene expression: lessons from provirus and non-integrated DNA (Wu, Retrovirology, 2004)
  • Stochastic Gene Expression in a Lentiviral Positive-Feedback Loop: HIV-1 Tat Fluctuations Drive Phenotypic Diversity (Weinberger et al., Cell, 2005)

Kozak sequences

  • Point Mutations Define a Sequence Flanking the AUG Initiator Codon That Modulates Translation by Eukaryotic Ribosomes (Kozak, Cell, 1986)
  • At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells (Kozak, Journal of Molecular Biology, 1987)