Waterloo

From 2007.igem.org

Revision as of 18:39, 21 October 2007 by Jlapointe (Talk | contribs)
UWLogo.jpg University of Waterloo iGEM Team

Contents

Our Team

The UW iGEM team is a very interdisciplinary group. Our team members span the three faculties of Science, Mathematics and Engineering and include the programs of Biology, Biomedical Sciences, Computer Science, Bioinformatics, Computer Engineering, Electrical Engineering, Chemical Engineering, and Mathematical Physics at undergraduate and graduate levels. Even our professor advisors are cross-appointed to two other faculties. Our diverse backgrounds bring together a wide range of skills and ideas to the iGEM project. iGEM is giving us the opportunity to apply the skills learned in our lectures and labs to real life applications in molecular biology and biotechnology.

Abstract

Background

Binary Addition

When working in binary, only two digits are used: 0 and 1. Counting therefore proceeds as:

  1. 1
  2. 10
  3. 11
  4. 100
  5. 101
  6. 111

etc.

To add two binary numbers, the process is much the same as adding two decimal (ordinary) numbers, except that instead of carrying when two digits add to ten, carrying must be performed when two digits add to two. In other words, 0 + 1 adds to 1, but 1 + 1 adds to 0 with a carry of 1, which gives 10 (just as in decimal 1 + 9 would add to 0 with a carry of 1, to give 10). A complete list of the possibilities is as follows:

000.jpg

Half-Adder vs Full-Adder

Any construct designed to add two numbers will either be a half-adder or a full-adder. A half-adder can only add together two single digits, whereas a full-adder is needed to add two numbers of any length greater than one digit.

For example, a half-adder could perform the addition 1 + 0 = 1, or 1 + 1 = 10, but it would take a full-adder to be able to perform 1100101 + 100101.

In terms of implementation, a half-adder accepts two inputs (the two digits to be summed) and returns two outputs (the "sum bit" and the "carry bit"). To add 1 + 1, the two inputs would each be 1, the sum bit would be 0, and the carry bit would be 1. A full list of the possibilities is shown in Figure 1.

A full-adder is merely a half-adder that accepts an extra input; namely, the carry bit from another full-adder. Each full-adder is responsible for adding one pair of corresponding digits from the two numbers to be added, and it must add to that the carry bit from the previous full-adder. The full-adder will output the resulting sum bit and carry bit, and the process will continue until all the digits have been added. Such a chain of full-adders is called a ripple carry adder.


Figure 1: Half Adder Truth Table

111.jpg


Figure 2: Full Adder Truth Table

333.jpg


Figure 3: Long Addition of 101 + 001

222.jpg

DNA as Logic Gates

Project Details

Inputs (stimuli and the genes used to detect them)

Output (observable change and what it represents)

Gene Diagram

Testing/Results

Mathematical Model

Measurements

Extensions

Full Adder

==Acknowledgements== (Sponsor logos)