Approach
The goal of the project is to produce chlorophyll by establishing a strong metabolic pathway in E.Coli. A generic metabolic pathway for chlorophyll synthesis in plants is given in Figure 1. The biosynthesis of bacteriochlorophyll is similar; the part that our project focused on is shown in Figure 2.
In order to channel the flux of carbon through the chlorophyll biosynthetic pathway, the flux through the first branch point between the native E.Coli pathway and the chlorophyll pathway must be optimized. The enzyme magnesium-chelatase is responsible for converting protoporphyrin IX to Mg-protoporphyrin IX. Because this reaction IX must occur to a large degree, we want to use an enzyme that has the most enhanced activity. Since all photosynthetic bacteria utilize the very similar bacteriochlorophyll synthesis pathways, they all have their own versions of Mg-chelatase to perform the Mg-insertion reaction. A large part of the project is to subclone the genes for Mg-chelatse, for three photosynthetic bacteria—Rhodobacter sphaeroides (purple bacteria), Synechocystis sp. (cyanobacteria), and Heliobacillus mobilis (heliobacteria). After subcloning, the enzymes are overexpressed and their activities are measured.
Besides the establishment of a strong initial input of flux through the bacteriochlorophyll photosynthesis pathway, we have also explored the latter parts of the pathway. These latter steps are crucial for catalyzing reactions that would lead to the final product—bacteriochlorophyll.
|