Tokyo/Formulation/1.toggle model

From 2007.igem.org

< Tokyo/Formulation
Revision as of 17:38, 21 October 2007 by Akama (Talk | contribs)

1.toggle model

First,we obtain the ordinary differential equations(ODEs) of the toggle switch.


Expression1-1.jpg Parameter1-1.jpg


And,we normalize these expressions to analyze easily.So,ODEs become dementionless. なるってbecomeであってる??


Expression1-2.jpg


if the system goes to the steady state,time variation equal to zero.So we solve righe-hand side=0.


Siki2.jpg


These graph are below.The lines of graph are nullcline,and the intersection of nullclines is the equillibrium point.


About parameters,we use three sets of parameters.
  1)the maximum expression rate of repressor A and repressor B is balanced,and hill coefficient of both A and B is three.
  2)the maximum expression rate of repressor A and repressor B is equal,and hill coefficient of A is one.
  3)the maximum expression rate of repressor A and repressor B is not balanced,and hill coefficient of both A and B is three.
Parameter1-2.jpgParameter1-3.JPGParameter1-4.JPG
Toggle1.jpgToggle2.jpgToggle1-4.jpg


we correlate phaseplane analysis and simulation results.
First,we simulate about the phaseplane of two stable equilibrium points(the upper left figure) and use three kinds of initial values.
1. (Ra:low , Rb:high) 2. (Ra:high , Rb:low) 3. (Ra:middle , Rb:middle)


Toggle3.jpg Toggle4.JPG Toggle5.JPGToggle1-1.jpg


安定点B付近から始めるとB状態で安定し,安定点A付近から始めるとA状態で安定しているのが分かる. 不安定点付近から始めるとどちらかで安定化する.


Next, 次に,安定点が一つしかない場合のシミュレーション結果は下のようになる.


Toggle6.JPG Toggle7.JPG Toggle8.JPGToggle1-2.jpg


安定点が一つしかない場合は,安定点B付近から始めてもA状態で安定化してしまうのが分かる.
As a result,taking two stable status need the phaseplane of two stable equilibrium points and we have to set proper parameters.