ETHZ/Engineering

From 2007.igem.org

(Difference between revisions)
(.:: Introduction ::.)
Line 9: Line 9:
=====.:: Introduction ::.=====
=====.:: Introduction ::.=====
-
<p>In order to understand if it is possible to create the learning system that we wanted, we had to run some initial simulations, to see if we could reach the desirable steady states. After creating a basic framework on which to work on, we refined the parameters by searching the available literatures. In the next, we are presented the coupled differential equations that model our system, their parameters and the values that we picked, the results of our simulations, and lastly, we provide our references. For an introduction to system modeling in synthetic biology, please read our guide [ETHZ/Modeling_Basics|here]</p><br>
+
<p>In order to understand if it is possible to create the learning system that we wanted, we had to run some initial simulations, to see if we could reach the desirable steady states. After creating a basic framework on which to work on, we refined the parameters by searching the available literatures. In the next, we are presented the coupled differential equations that model our system, their parameters and the values that we picked, the results of our simulations, and lastly, we provide our references. For an introduction to system modeling in synthetic biology, please read our modeling tutorial [[ETHZ/Modeling_Basics|here]]</p><br>
=====.:: System Model ::.=====
=====.:: System Model ::.=====

Revision as of 17:36, 7 October 2007

Eth zh logo 2.png
Main Page      Biology Pespective      Engineering Perspective      Meet the Team      Team Notes      Pictures!


.:: EducatETH E. Coli - Engineering Perspective ::.

.:: Introduction ::.

In order to understand if it is possible to create the learning system that we wanted, we had to run some initial simulations, to see if we could reach the desirable steady states. After creating a basic framework on which to work on, we refined the parameters by searching the available literatures. In the next, we are presented the coupled differential equations that model our system, their parameters and the values that we picked, the results of our simulations, and lastly, we provide our references. For an introduction to system modeling in synthetic biology, please read our modeling tutorial here


.:: System Model ::.

Based on [1], we modeled the biological system with differential equations. According to what presented in the Biology Perspective, our system is composed of three subsystems:

  1. A subsystem of constitutively produced proteins (see Fig. 1),
  2. The learning part (see Fig. 2), and
  3. The reporting subsystem (see Fig. 3).
The first two subsystems interact, and thus, they should be considered together. The third subsystem has no feedback with the other two, as it is only used for producing the appropriate fluorescent proteins. The subsystem with the constitutively produced proteins serves as a regulatory system, and can be modeled with three decoupled partial differential equations (see Fig. 1):
Subsystem 1: Constitutively produced proteins (Fig. 1)

The second subsystem is the main part of the biological model. This subsystem stores the information concerned the learned chemical, and drives the production of the appropriate reporter, during the recognition phase. It is actually a toggle switch, that reaches a steady state depending on the chemical that it is exposed to (see Fig. 2):

Subsystem 2: Basic learning subsystem (toggle) (Fig. 2)

The third subsystem reports the state that our system is, during the different phases of learning and recognition. During the learning phase, this subsystem reports which chemical the cells are exposed to, and during the recognition phase, it reports if the cells recognize the chemicals that they are currently exposed to (see Fig. 3):

Subsystem 3: Reporting subsystem (Fig. 3)

Note that the three constitutively produced proteins LacI, TetR and LuxR exist in two different forms; as free proteins and in complexes they build with IPTG, aTc and AHL, respectively. We need to model this complex-forming procedure, with another set of differential equations (Fig. 4):

Allosteric regulation (see Fig. 4)


.:: Simulations ::.
.:: References ::.

[1] This book
[2] A synthetic time-delay circuit in mammalian cells and mice (http://www.pnas.org/cgi/content/abstract/104/8/2643)
[3] Detailed map of a cis-regulatory input function (http://www.pnas.org/cgi/content/full/100/13/7702?ck=nck)
[4] Parameter Estimation for two synthetic gene networks (http://ieeexplore.ieee.org/iel5/9711/30654/01416417.pdf)
[5] Supplementary on-line information for "A Synthetic gene-metabolic oscillator" (no link)
[6] Genetic network driven control of PHBV copolymer composition (http://doi:10.1016/j.jbiotec.2005.08.030)



.:: To Do ::.