Ljubljana/implementation

From 2007.igem.org

< Ljubljana(Difference between revisions)
 
(19 intermediate revisions not shown)
Line 3: Line 3:
<title>Company Name</title>
<title>Company Name</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
-
<link href="http://rokgaber.3host.biz/stylenew_zadaj.css" rel="stylesheet" type="text/css" />
+
<link rel="stylesheet" href="/igem07/index.php?title=User:RGaber/stylesheet/stylenew_zadaj.css&action=raw&ctype=text/css" type="text/css" />
</head>
</head>
<body>
<body>
Line 16: Line 16:
      
      
     </div>
     </div>
-
     <div id="aboutred">
+
     <div align="justify" id="aboutred">
       <h3><span>Implementation</span></h3>
       <h3><span>Implementation</span></h3>
-
       <p class="p1"><span><b>POVZETEK. Je potreben?</b></span></p>
+
       <p class="p1"><span><b></b></span></p>
     </div>
     </div>
   </div>
   </div>
Line 27: Line 27:
-
   <div id="supportingText">
+
   <div align="justify" id="supportingText">
Line 33: Line 33:
<div id="products">
<div id="products">
-
       <h3><span>Activation based on the heterodimer formation and reconstitution of split proteins</span></h3>
+
       <h2><span>Activation based on heterodimer formation and reconstitution of split proteins</span></h2>
-
      <p class="p1"><span>HIV (human immunodeficiency virus) is a retrovirus, Its genome is composed of two single stranded RNA molecules. It has a gag/pol/env organization; gag genes (group specific antigen) code for structural proteins, env for proteins that build viral envelope, while pol genes are responsible for viral reproduction (they contain genes for reverse transcriptase, integrase and HIV protease).<br><br>
+
<br>     
 +
<p class="p1"><span>We selected to use dimerization of two human transmembrane receptors, CD4 and CCR5 (or CXCR4), as a signal for triggering the antiviral defense system. The advantage of the system is that antiviral processes in the cells start even before a virus infects cells. We discussed several possible approaches and finally focused on split proteins as a possible initiation point of a new signaling pathway. Two split proteins were found to be potentially useful (Stagljar and Fields, 2002; Wehr et al, 2006), ubiquitin and tobacco etch virus protease (TEVP), because they both result in a proteolytic event, which can liberate the next protein in the activation cascade.<br><br>
-
HIV envelope consists of lipids and viral glycoproteins gp120 and gp41, which are crucial for binding of HIV to the host cell membrane and for entering into the cell. Inserted into the lipid bilayer are also other glycoproteins that guarantee firmness and protective function of the viral envelope. Gp120 binds to receptors (CD4) on the host cell surface, but additional co-receptors like chemokine receptors (CCR5, CXCR4) are also required for successful entry of HIV. Mutations in co-receptor genes can cause immunity – if HIV cannot enter host cells, HIV infection is prevented, and AIDS cannot develop.<br><br>
 
-
The characteristic retroviral enzyme is reverse transcriptase, which transcripts viral RNA into DNA. Only DNA can integrate into host cell genome – this is the crucial step in expressing viral proteins that are needed for assembly of new viral particles. Viral gag and gag/pol genes are expressed as polyprotein; until this polyprotein is cut into functional units, it exerts no biological function. Polyprotein clipping is done by HIV protease. The resulting polyprotein fragments represent functional enzymes and structural proteins.<br><br>
+
      <h3><span>Split ubiquitin system</span></h3>
 +
      <p class="p1">
-
Transcription of viral RNA into DNA and processing of the viral polyprotein are two most important steps in HIV replication cycle. These are thus obvious targets for HIV therapeutics. Inhibitors of reverse transcriptase and HIV protease are currently used to treat acute HIV infection.</a></span></p><br>
 
 +
For the purpose of our project we fused CD4 transmembrane receptor with the C-terminal part of ubiquitin (Cub), and CCR5 (or CXCR4) with the N-terminal part of ubiquitin (Nub). Our pathway could thus be induced by both HIV-1 and HIV-2 (which uses CXCR4 as the coreceptor for binding onto target cells). The basic idea behind our approach was that dimerization of receptors caused by HIV enables reconstitution of Nub and Cub. The reassembled ubiquitin is recognized by the ubiquitin-specific protease and cleaved at its C-terminus. If we append an effector protein onto the CD4-Cub fusion, the specific protease would thus release the effector, which is fixed on the membrane in an inactive form before dimerization. The principle of the split ubiquitin assay is described <a href="https://2007.igem.org/Ljubljana/splitubiquitinassay">HERE</a>.<br><br>
 +
It is likely that HIV causes dimerization of just a few CD4 and CCR5 receptors, therefore we could not rely on only a few effector protein molecules (e.g. caspase-3 or interferon β) being released. The release of just a few effector molecules would not be sufficient for a strong antiviral effect. We therefore decided to use the very specific bacteriophage T7 RNA polymerase (T7 RNAP), add a nuclear localization signal (NLS) to its end and couple both to the C-terminus of Cub.<br><br>
 +
T7 RNAP transcribes only genes controlled by the T7 bacteriophage promoter. This promoter is very strong and is not recognized by any other cellular RNA polymerase. In our devices either the death effector caspase 3 gene, which is part of the apoptosis pathway and causes controlled cell death, or interferon β gene, which has a role in the cellular antiviral defense system were placed under this promoter.<br><br>
-
     
+
When HIV binds to the cell surface it triggers dimerization of CD4 and CCR5 (or CXCR4) receptors. In our synthetic system, receptors are linked to split ubiquitin and T7 RNAP-NLS. As a consequence of dimerization, T7 RNA polymerase is released from the membrane and translocates into the nucleus, where it transcribes the effector genes (could be one or several different!) under the control of the T7 promoter. This results either in apoptosis or in improved antiviral defense of the infected cell. We also designed a construct where T7 RNAP gene is placed under the T7 promoter for self amplification of the signal which enables mammalian cells to react to infection with minute numbers of HIV viruses.<br><br>
-
      <h3><span>Current Disease Treatment</span></h3>
+
-
      <p class="p1">One of the first AIDS therapeutics were nucleotide or nucleoside analogues (NRTI – nucleoside-analogue reverse transcriptase inhibitors) – pseudosubstrates, that are during reverse transcription integrated into viral DNA instead of nucleosides and thus block the transcription. These drugs were superseded by non-nucleoside inhibitors (NNRTI) that could inhibit reverse transcriptase by binding into the alosteric site of the enzyme. The third type of drugs is a family of HIV protease inhibitors. In most cases specific inhibitors are very similar to protease substrates - the only difference is that because they cannot be cut, they block the active site by remaining bound into it.<br><br>
+
-
Weakness of all these therapeutics is that they are very sensitive to HIV mutations – HIV can easily mutate and thus become drug resistant. A combination of drugs is used to minimize HIV's potential to develop resistance to each individual drug in the mixture. Some of the drugs induce mutations that have negative effect on the virulence and such drugs can be used in spite of developed resistance.<br><br>
 
-
We still do not have a cure for AIDS that would be insensitive to HIV mutations. Our project presents new ways of potential AIDS therapeutics. Our approaches can be considered independent of HIV mutations. We have set up a few of biological ambushes; if HIV manages to avoid them, we presume that it would not be able to infect the cell anyway.</p>
 
 +
<center>
 +
          <object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000" codebase="http://fpdownload.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=8,0,0,0" width="600" height="500" id="team2" > <param name="allowScriptAccess" value="sameDomain" /> <param name="movie" value="https://static.igem.org/mediawiki/2007/8/86/Split_ubiquitin.swf" /><param name="quality" value="high" /><param name="bgcolor" value="#ffffff" /><embed src="https://static.igem.org/mediawiki/2007/8/86/Split_ubiquitin.swf" quality="high" bgcolor="#ffffff" width="600" height="500" name="team2" allowScriptAccess="sameDomain" type="application/x-shockwave-flash" pluginspage="http://www.macromedia.com/go/getflashplayer" />
 +
          </object><br>
 +
</center>
 +
Animation of split-ubiquitin system.<br>
-
   
+
<br>
 +
</p> 
     </div>
     </div>
-
     <div id="support">
+
     <div align="justify" id="support">
-
       <h3><span>Classes of Antiretroviral Drugs</span></h3>
+
       <h3><span>Split TEV protease</span></h3>
-
       <p class="p1">Antiretroviral drugs are mostly inhibitors of different stages in HIV life cycle. They are targeted at different enzymes or events that are typical for HIV infection – entry of the virus into the cell, reverse transcription, polyprotein cleavage... and are divided into seven main classes (REFERENCA!):<br>
+
       <p class="p1">TEV protease (TEVP) is a highly site-specific protease that is found in the Tobacco Etch Virus (TEV). One of the main uses of this protease in molecular biotechnology is in removing affinity tags from purified recombinant proteins as it specifically cleaves the sequence ENLYFQ↓S. Additionally, a split protein assay was developed based on TEVP which functions very similar to the split ubiquitin system. The basic principle of this relatively new assay (Wehr et al, 2006) is described <a href="https://2007.igem.org/Ljubljana/splittevpassay">HERE</a>.<br><br>
-
 
+
 +
For the purpose of our project we fused CD4 receptor with TEVP-C (C-terminal half of TEV protease) and CCR5 co-receptor with TEVP-N (N-terminal half of TEV protease). Another fusion protein composed of the myristoylation domain, TEVP-specific cleavage site and T7 RNA polymerase with NLS was constructed. We named this protein ‘TEVP substrate protein’. T7 RNA polymerase was targeted to the membrane by connecting it to the membrane through a myristoyl anchor on the TEVP cleavage sequence. When released from the membrane, T7 RNAP translocates to the nucleus and transcribes genes controlled by the T7 promoter. Downstream of translocation of T7 RNA polymerase into the nucleus the system is the same as already described above under split ubiquitin system.<br><br>
 +
<center>
 +
          <object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000" codebase="http://fpdownload.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=8,0,0,0" width="600" height="500" id="team2" > <param name="allowScriptAccess" value="sameDomain" /> <param name="movie" value="https://static.igem.org/mediawiki/2007/0/0a/Split_tev.swf" /><param name="quality" value="high" /><param name="bgcolor" value="#ffffff" /><embed src="https://static.igem.org/mediawiki/2007/0/0a/Split_tev.swf" quality="high" bgcolor="#ffffff" width="600" height="500" name="team2" allowScriptAccess="sameDomain" type="application/x-shockwave-flash" pluginspage="http://www.macromedia.com/go/getflashplayer" />
 +
          </object><br>
 +
</center>
 +
Animation of split-TEV protease system.<br><br>
</p>
</p>
Line 72: Line 82:
-
     <div id="development">
+
 
-
       <h3><span>Development</span></h3>
+
 
-
       <p class="p1">Lorem ipsum dolor sit amet, <a href="#">consetetur sadipscing elitr, sed diam nonumy</a> eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. </p>
+
     <div align="justify" id="development">
-
      <p class="p2">Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. </p>
+
       <h2><span>Activation based on the HIV Protease Activity</span></h2>
-
      <p class="p3">Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. </p>
+
       <p class="p1">The second approach to detect viral infection utilizes the proteolytic activity of HIV protease, so the system is useful when HIV has already infected cells. This protease is required for cleavage of a viral polyprotein and has a defined substrate specificity, similar to the above mentioned TEV protease. Activation of the viral protease inside infected cells can be used to trigger the defense system, as already tested with peptides (Vocero-Akbani, 1999). The activation step occurs when HIV protease cleaves inside the linker which connects the membrane anchor and a reporter protein.<br><br>
-
      <p class="p4">Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. </p>
+
 
-
      <p class="p5">Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore.</p>
+
We constructed two fusion proteins composed of a membrane anchor, linker with HIV proteolytic cleavage site and T7 RNA polymerase with NLS. The idea of the membrane anchor is to keep T7 RNAP connected to the membrane, so that in the absence of HIV virus the system remains inactive. In our case we used CD4 or myristoylation signal, but it could be essentially any other membrane protein.<br><br>
 +
 
 +
When the expression of viral proteins for new virions starts, HIV protease becomes active in order to process viral proproteins. Active HIV protease can now also cleave and release T7 RNA polymerase from the membrane. T7 RNAP then translocates into the nucleus where it transcribes genes under the control of the T7 promoter as already described with previous systems.<br><br>
 +
 
 +
 
 +
 
 +
<center>
 +
          <object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000" codebase="http://fpdownload.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=8,0,0,0" width="600" height="500" id="team2" > <param name="allowScriptAccess" value="sameDomain" /> <param name="movie" value="https://static.igem.org/mediawiki/2007/d/d5/Hiv_protease.swf" /><param name="quality" value="high" /><param name="bgcolor" value="#ffffff" /><embed src="https://static.igem.org/mediawiki/2007/d/d5/Hiv_protease.swf" quality="high" bgcolor="#ffffff" width="600" height="500" name="team2" allowScriptAccess="sameDomain" type="application/x-shockwave-flash" pluginspage="http://www.macromedia.com/go/getflashplayer" />
 +
          </object><br>
 +
</center>
 +
 
 +
Animation of HIV protease system.<br>
 +
 
 +
 
 +
</p>
 +
     
     </div>
     </div>
Line 86: Line 111:
     <div id="footer">______________________________________<br />
     <div id="footer">______________________________________<br />
        
        
 +
<a href="https://2007.igem.org/Ljubljana/Strategy">Strategy</a>
|<a href="https://2007.igem.org/Ljubljana">Home</a>|
|<a href="https://2007.igem.org/Ljubljana">Home</a>|
-
<a href="https://2007.igem.org/Ljubljana/HIVbacground">HIV-1 Infection Background</a>
+
<a href="https://2007.igem.org/Ljubljana/model">Model</a>
</div>
</div>
-
 
-
 
   </div>
   </div>
   <div id="linkList">
   <div id="linkList">
     <div id="linkList2">
     <div id="linkList2">
       <div id="lmenu">
       <div id="lmenu">
 +
 +
<center>
 +
<a href="https://2007.igem.org/Ljubljana">
 +
<img border="0" src="https://static.igem.org/mediawiki/2007/c/c6/BlurMetalHome.gif" width="34" height="34">
 +
</center>
 +
 +
 +
         <h3 class="menu"><span><a class="two" href="https://2007.igem.org/Ljubljana/AIDSplague">AIDS - Today's Plague</a></span></h3>
         <h3 class="menu"><span><a class="two" href="https://2007.igem.org/Ljubljana/AIDSplague">AIDS - Today's Plague</a></span></h3>
         <ul>
         <ul>
 +
          <li><a class="one" href="https://2007.igem.org/Ljubljana/AIDSplague">Epidemics</a>&nbsp; </li>
           <li><a class="one" href="https://2007.igem.org/Ljubljana/HIVbacground">HIV-1 Infection Background</a>&nbsp; </li>
           <li><a class="one" href="https://2007.igem.org/Ljubljana/HIVbacground">HIV-1 Infection Background</a>&nbsp; </li>
           <li><a class="one" href="https://2007.igem.org/Ljubljana/Currenttreatment">Current Disease Treatment</a>&nbsp; </li>
           <li><a class="one" href="https://2007.igem.org/Ljubljana/Currenttreatment">Current Disease Treatment</a>&nbsp; </li>
Line 102: Line 135:
       </div>
       </div>
       <div id="llinks">
       <div id="llinks">
-
         <h3 class="links"><span><a class="two" href="https://2007.igem.org/Ljubljana/Strategy">Strategy</a></span></h3>
+
         <h3 class="links"><span><a class="two" href="https://2007.igem.org/Ljubljana/Strategy">Project</a></span></h3>
         <ul>
         <ul>
-
          <li><a class="one" href="https://2007.igem.org/Ljubljana/implementation">Implementation</a>&nbsp; </li>
+
        <li><a class="one" href="https://2007.igem.org/Ljubljana/Strategy">Strategy</a>&nbsp; </li> 
 +
<li><a class="one" href="https://2007.igem.org/Ljubljana/implementation">Implementation</a>&nbsp; </li>
           <li><a class="one" href="https://2007.igem.org/Ljubljana/model">Model</a>&nbsp; </li>
           <li><a class="one" href="https://2007.igem.org/Ljubljana/model">Model</a>&nbsp; </li>
         </ul>
         </ul>
Line 122: Line 156:
         <ul>
         <ul>
-
           <li><a class="one" href="https://2007.igem.org/Ljubljana/achievements">Achievements</a>&nbsp; </li>
+
           <li><a class="one" href="https://2007.igem.org/Ljubljana/summary">Achievements</a>&nbsp; </li>
-
           <li><a class="one" href="https://2007.igem.org/Ljubljana/prospects">Prospects</a>&nbsp; </li>
+
           <li><a class="one" href="https://2007.igem.org/Ljubljana/summary">Prospects</a>&nbsp; </li>
            
            
Line 131: Line 165:
<div id="ldiscussion">
<div id="ldiscussion">
         <h3 class="discussion"><span><a class="two" href="https://2007.igem.org/Ljubljana/team">Team</a></span></h3>
         <h3 class="discussion"><span><a class="two" href="https://2007.igem.org/Ljubljana/team">Team</a></span></h3>
-
         <ul>
+
         <br><br>
-
         
+
</div>        
-
<br><br>
+
 
-
<li><a class="one" href="https://2007.igem.org/Ljubljana/glossary">Terms & References</a>&nbsp; </li>
+
<div id="ldiscussion">
 +
<ul><li><a class="one" href="https://2007.igem.org/Ljubljana/glossary">Glossary & References</a>&nbsp; </li>
<li><a class="one" href="https://2007.igem.org/Ljubljana/acknowledgements">Acknowledgements</a>&nbsp; </li>
<li><a class="one" href="https://2007.igem.org/Ljubljana/acknowledgements">Acknowledgements</a>&nbsp; </li>
         </ul>
         </ul>

Latest revision as of 18:45, 23 November 2007

Company Name

Implementation

Activation based on heterodimer formation and reconstitution of split proteins


We selected to use dimerization of two human transmembrane receptors, CD4 and CCR5 (or CXCR4), as a signal for triggering the antiviral defense system. The advantage of the system is that antiviral processes in the cells start even before a virus infects cells. We discussed several possible approaches and finally focused on split proteins as a possible initiation point of a new signaling pathway. Two split proteins were found to be potentially useful (Stagljar and Fields, 2002; Wehr et al, 2006), ubiquitin and tobacco etch virus protease (TEVP), because they both result in a proteolytic event, which can liberate the next protein in the activation cascade.

Split ubiquitin system

For the purpose of our project we fused CD4 transmembrane receptor with the C-terminal part of ubiquitin (Cub), and CCR5 (or CXCR4) with the N-terminal part of ubiquitin (Nub). Our pathway could thus be induced by both HIV-1 and HIV-2 (which uses CXCR4 as the coreceptor for binding onto target cells). The basic idea behind our approach was that dimerization of receptors caused by HIV enables reconstitution of Nub and Cub. The reassembled ubiquitin is recognized by the ubiquitin-specific protease and cleaved at its C-terminus. If we append an effector protein onto the CD4-Cub fusion, the specific protease would thus release the effector, which is fixed on the membrane in an inactive form before dimerization. The principle of the split ubiquitin assay is described HERE.

It is likely that HIV causes dimerization of just a few CD4 and CCR5 receptors, therefore we could not rely on only a few effector protein molecules (e.g. caspase-3 or interferon β) being released. The release of just a few effector molecules would not be sufficient for a strong antiviral effect. We therefore decided to use the very specific bacteriophage T7 RNA polymerase (T7 RNAP), add a nuclear localization signal (NLS) to its end and couple both to the C-terminus of Cub.

T7 RNAP transcribes only genes controlled by the T7 bacteriophage promoter. This promoter is very strong and is not recognized by any other cellular RNA polymerase. In our devices either the death effector caspase 3 gene, which is part of the apoptosis pathway and causes controlled cell death, or interferon β gene, which has a role in the cellular antiviral defense system were placed under this promoter.

When HIV binds to the cell surface it triggers dimerization of CD4 and CCR5 (or CXCR4) receptors. In our synthetic system, receptors are linked to split ubiquitin and T7 RNAP-NLS. As a consequence of dimerization, T7 RNA polymerase is released from the membrane and translocates into the nucleus, where it transcribes the effector genes (could be one or several different!) under the control of the T7 promoter. This results either in apoptosis or in improved antiviral defense of the infected cell. We also designed a construct where T7 RNAP gene is placed under the T7 promoter for self amplification of the signal which enables mammalian cells to react to infection with minute numbers of HIV viruses.


Animation of split-ubiquitin system.

Split TEV protease

TEV protease (TEVP) is a highly site-specific protease that is found in the Tobacco Etch Virus (TEV). One of the main uses of this protease in molecular biotechnology is in removing affinity tags from purified recombinant proteins as it specifically cleaves the sequence ENLYFQ↓S. Additionally, a split protein assay was developed based on TEVP which functions very similar to the split ubiquitin system. The basic principle of this relatively new assay (Wehr et al, 2006) is described HERE.

For the purpose of our project we fused CD4 receptor with TEVP-C (C-terminal half of TEV protease) and CCR5 co-receptor with TEVP-N (N-terminal half of TEV protease). Another fusion protein composed of the myristoylation domain, TEVP-specific cleavage site and T7 RNA polymerase with NLS was constructed. We named this protein ‘TEVP substrate protein’. T7 RNA polymerase was targeted to the membrane by connecting it to the membrane through a myristoyl anchor on the TEVP cleavage sequence. When released from the membrane, T7 RNAP translocates to the nucleus and transcribes genes controlled by the T7 promoter. Downstream of translocation of T7 RNA polymerase into the nucleus the system is the same as already described above under split ubiquitin system.


Animation of split-TEV protease system.

Activation based on the HIV Protease Activity

The second approach to detect viral infection utilizes the proteolytic activity of HIV protease, so the system is useful when HIV has already infected cells. This protease is required for cleavage of a viral polyprotein and has a defined substrate specificity, similar to the above mentioned TEV protease. Activation of the viral protease inside infected cells can be used to trigger the defense system, as already tested with peptides (Vocero-Akbani, 1999). The activation step occurs when HIV protease cleaves inside the linker which connects the membrane anchor and a reporter protein.

We constructed two fusion proteins composed of a membrane anchor, linker with HIV proteolytic cleavage site and T7 RNA polymerase with NLS. The idea of the membrane anchor is to keep T7 RNAP connected to the membrane, so that in the absence of HIV virus the system remains inactive. In our case we used CD4 or myristoylation signal, but it could be essentially any other membrane protein.

When the expression of viral proteins for new virions starts, HIV protease becomes active in order to process viral proproteins. Active HIV protease can now also cleave and release T7 RNA polymerase from the membrane. T7 RNAP then translocates into the nucleus where it transcribes genes under the control of the T7 promoter as already described with previous systems.


Animation of HIV protease system.