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Abstract
The availability of genome‑wide RNAi libraries has enabled researchers to rapidly 

assess the functions of thousands of genes; however the fact that these screens are run 
in living biological systems add complications above and beyond that normally seen in 
high‑throughput screening (HTS). Specifically, error due to variance in both measurement 
and biology are large in such screens, leading to the conclusion that the majority of “hits” 
are expected to be false positives. Here, we outline basic guidelines for screen develop‑
ment that will help the researcher to control these forms of variance. By running a large 
number of positive and negative control genes, error of measurement can be accurately 
estimated and false negatives reduced. Likewise, by using a complex readout for the 
screen, which is not easily mimicked by other biological pathways and phenomena, false 
positives, can be minimized. By controlling variance in these ways, the researcher can 
maximize the utility of genome‑wide RNAi screening.

Genome‑wide siRNA libraries have opened up the era of true functional genomics. 
Although there have been many claims of “functional genomics” since the completion of 
the human genome project at the turn of the millennium, many of these have in fact been 
expression genomics studies. In many of these studies, function was actually inferred or 
deduced on the basis of information taken largely from the literature. Therefore, in many 
cases the derived function is no better than a guess. Although true functional genomics 
studies have been done using complex experimental readouts from known physiological 
states or positive controls and pattern matching the resulting readouts,1‑6 RNAi allows 
for the first time the direct measurement of gene function in pathways of interest on 
a genome‑wide scale. This approach has been quickly embraced in both academic and 
industrial research.7‑12

High‑throughput siRNA screens combine the issues particular to both the analysis of 
HTS and to the study of complex biological systems, and as a result, the researcher has 
two forms of variance to contend with: measurement and biological. Most experimental 
scientists are faced with biological variance on a daily basis, but are less concerned with 
error of measurement as this is often small relative to that found between the organ-
isms in question. On the other hand, HTS laboratories frequently face issues with error 
of measurement, but are not always forced to contend with the variance introduced 
when working on living systems. Because both of these forms of variance are present in 
high‑throughput RNAi screens, consideration of both is paramount in the design and 
analysis of a genome wide siRNA screen.

Error of Measurement
In large siRNA screens testing ten to twenty thousand genes, it would appear that the 

researcher has an excellent estimate of measurement error because of the large number of 
data points. While this is to some extent true, the fact that in most libraries the majority of 
genes are represented only one time and those that are represented multiple times are often 
done so under different siRNA designs makes the analysis of the error of measurement 
more complex. With an n = 1 per gene, it is impossible to determine the error of measure-
ment, and then in turn to determine how much of the total variance is due to differences 
in the effects of genes on the pathway being studied. In a recently published paper,12 
individual siRNAs were found to have a coefficient of variance of roughly twenty (i.e., 
standard deviation roughly 20% of the mean levels for all readouts tested) calculated from 
multiple runs of positive controls and non-silencing negative controls. This fact, combined 
with the large number of genes tested, leads one to the conclusion that in a genome‑wide 
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siRNA screen for effects on a given biological process, the majority of 
hits are expected to be false positives. Consider a screen with twenty 
thousand genes tested, searching for a reduction in the production 
of protein X. Assume an error of measurement as seen in Majercak 
et al.,12 and 0.1% of genes actually decreasing protein production by 
40% or more. If 5% of the remaining 19,980 genes fall two standard 
deviations from the mean (as expected by chance), we should see 
almost 500 genes showing a reduction in protein X levels of 40% or 
more due to chance alone, resulting in roughly 95% false positives at 
this level. Indeed, if we were to run a screen using only non-silencing, 
negative control siRNAs, the data would most likely be normally 
distributed, with a number of genes 2 and 3 standard deviations from 
the mean for any readout tested. Again, this brings us to the conclu-
sion that for most screens, and especially for those where the readout 
of interest turns out to be normally distributed, we must assume that 
the majority of hits are false positives, especially when a large number 
of genes are tested.

Testing each siRNA multiple times would provide an estimate 
of the error of measurement and thus reduce the number of false 
positives; however due to the expense of genome‑wide screens this 
is not practical in many circumstances. Most researchers therefore 
prefer the obvious alternative of retesting a subset of siRNA from 
the primary screen (i.e., the top scoring hits). However, it is critical 
that the cutoff criteria used for hit selection be determined based 
upon the error of measurement rather than biological variance. For 
example, consider the study cited above.12 This screen was designed 
to detect genes which affect the processing of the amyloid‑precursor 
protein (APP), especially production of the Ab42 metabolite which 
has been implicated in the pathogenesis of Alzheimer’s disease. Hit 
selection cutoffs based strictly upon biological variance are shown in 
Figure 1A. The mean and standard deviation for the entire data set 
(n = 15,200 genes knocked down by siRNA, each individual siRNA 
considered once), were calculated and marked as potential cutoffs for 
secondary screening. Choosing a cutoff of three standard deviations 

below the mean, the researcher would only consider those siRNAs 
lowering amyloid to 12% of the non-silencing control (fourteen hits 
total); likewise choosing a less stringent cut of two standard deviations 
would included siRNAs lowering amyloid levels to 37% of control 
(320 hits total). Although at first pass these seem reasonable, Figure 
1B shows the behavior of a single, positive control siRNA (BACE1) 
over the course of 312 runs. BACE1 is the first enzyme to cleave APP 
in the production of Ab, and has been shown to be essential for this 
process.13 The average amyloid reduction by BACE1 knock‑down 
was roughly 70% from that of the non-silencing control, and the 
standard deviation (for BACE1 knock down only) was roughly 22%. 
Note that here we are only considering the knock‑down of a single 
gene to determine an estimate of the error of measurement, rather 
than biological variance.

These data allow us to ask the question “What is the likelihood 
that a researcher using the described cutoffs would detect a gene 
with an effect equal to BACE1 in this screen?”. BACE1 is necessary 
for amyloid production, and is thus the gold standard for this assay. 
Surprisingly, at a cutoff of three standard deviations, the researcher 
would have only a 16% chance of detecting this gene if represented 
only once in the library. Even when the cutoff is reduced to two 
standard deviations, the researcher still has a 25% chance of not 
detecting a gene with an effect equal to BACE1. Even if a “gold stan-
dard” positive control gene is not available/ not known, one can still 
calculate the power to detect genes with a given effect size if some 
genes are run in all 384‑well plates and the error of measurement is 
calculated. If a researcher fails to do this they will be unaware if the 
screen is underpowered; an unacceptable risk considering the time 
and expense involved in whole genome siRNA HTS.

Examination of the error of measurement has led to two 
conclusions that must be considered when designing/running a 
high‑throughput RNAi screen: the majority of the hits are false posi-
tives, and one must adjust the cutoff level for genes to be selected 
for secondary screening downward to accommodate the error of 

Figure 1.  Hit Selection in an APP processing siRNA screen.  When hits are selected based on the biological variability (A) a small number of genes are 
selected, and it is unclear what the power is to detect positive control genes which are in the library (and thus true positives as well).  A large number of runs 
on positive control genes, such as BACE1 in this example (B) can be used to determine the error of measurement associated with a given siRNA or siRNA 
pool.  The researcher can then use this information to determine the cutoff necessary for the desired power to detect the control gene.  An APP transgene 
with a β-secretase cleavage site mutated to NFEV was used in this screen to increase APP protein metabolite levels.  Metabolites are therefore designated 
Aβ42EV, Aβ40EV, sAPPβNF, and sAPPαNFEV, to reflect this fact12.
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measurement specific to the screen in question. The combination 
of these two factors suggests that the only way to ensure a successful 
high‑throughput siRNA screen is to run a large number of siRNAs a 
number of times. One way to partially circumvent this is to address 
the biological variance inherent in genome‑wide analysis through 
measurement of a complex, multi‑dimensional phenotype/readout.

Biological Variance and Complex Readouts
Biological variance is present in all research conducted in living 

systems. Researchers in the life sciences are generally aware of how 
to control for this; however when examining ten to twenty thousand 
genes, the total variance on the readout of interest can be massive. 
Because of the connectedness of biological pathways, genes affecting 
the screen readout of interest are expected to fall into one of three 
basic categories: direct effects on process, indirect effect on process, 
and effects on screen readout through unrelated processes. Genes 
exhibiting a direct effect on the process under study are frequently 
the smallest class, though they are of the highest interest. Genes 
having an indirect effect on the process of study (through mecha-
nisms such as control of mRNA levels, intracellular protein transport, 
protein phosphorylation, etc. which in turn affect the genes directly 
involved) can also be of interest in determining the overall physiology 
involved. However the third class of genes, those not involved in 

the pathway of interest but affecting the screen readout 
through unrelated mechanisms will be the focus of this 
section. These genes, which are false positives, present a 
challenge different from those due to error of measure-
ment. While those false positive that result from error of 
measurement can be weeded out in a secondary/confirma-
tion screen, false positives resulting from true biological 
effects on unrelated pathways affecting the screen readout 
cannot. These will be highly reproducible and difficult to 
detect, thus they pose the greatest threat for wasting time 
and resources in follow‑up work.

In the siRNA screen conducted by Majercak and 
others,12 an HEK cell line expressing an APP transgene 
driven by a CMV promoter was used to detect the effects 
of siRNA gene knock down on APP processing. In the 
primary HTS, several hundred genes were found to reduce 
amyloid levels with potency equal to or greater than the 
known secretases upon siRNA knock down. However, 
when the majority of these hits were compared to the 
known secretase positive controls, an important differ-
ence was noted. The known secretases did not drive all 
APP metabolites down simultaneously; specifically sAPPa 
was found to be unaffected or increased (Fig. 2A). When 
all metabolites of APP were examined for the hits in the 
primary screen, the majority (>90%) showed a different 
profile; one in which all metabolites were decreased (Fig. 
2B). This suggested some form of experimental artifact, 
which in this case was traced back to the CMV promoter 
used to produce transgenic over‑expression within the 
HEK cells. CMV‑driven transgenes are frequently used in 
research such as this, to increase the levels of the protein 
of interest to easily readable levels. In doing so, however, 
the researcher has introduced a non-native aspect to the 
system; one that can be manipulated via siRNA. The result 
is that genes affecting the promoter can be easily confused 
with those affecting APP processing. Upon inspection, 

hits which reduced all metabolites (or pan‑reducers) were shown to 
decrease APP expression, but importantly only APP expression driven 
by the CMV promoter (not endogenous APP expression).12 These 
genes represent the most insidious type of false positives; they have a 
robust effect on the primary readout, which is readily reproducible in 
follow‑up screens and assays in the same cell line. Likewise, these false 
positives do not necessarily all come from the same artifact; siRNAs 
which globally effect protein secretion could be expected to have a 
similar readout even when they do not affect the process of interest 
(APP metabolism) either directly or indirectly.

There is no set way to deal with false positives resulting from this 
form of biological variance (i.e., variance in the data resulting from 
siRNAs affecting unrelated pathways altering the readout only while 
not affecting the process being studied, as opposed to variance in the 
size of the effect on the pathway of interest). The tests necessary to 
detect these will vary from screen to screen, and will depend on the 
specifics of the cell type being used. One general principle, however, 
can be taken from recent biomarker and microarray profiling work. 
In general, a readout that is more complex and multi‑dimensional 
will be more difficult to mimic via an alternate biological pathway 
than one consisting of a single measurement. In the Majercak et 
al study,12 this was accomplished by measuring four separate APP 
metabolites; true positives altering processing changed the ratio of 
these readouts, and false positive pan‑reducers were easily removed. 

Figure 2. Multiple readouts separate true from false positives. Known secretase genes 
were used as positive controls (A) and none showed a profile reducing all metabolites 
measured, but rather shifting ratios between the various products. Many hits from the 
screen (B) had profiles similar to CASP9 and MAS1, reducing all metabolites. These 
were shown to be reducing APP through altered expression of the transgene. True hits, 
such as LRRTM3, shifted the ratios between the various APP metabolites as was seen in 
positive controls. All values are shown relative to non-silencing controls for that metabo‑
lite (fixed at 100%). * = p< 0.05 vs. non-silencing control siRNA treated cells.
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In screens measuring levels of proteins of interest, any gene affecting 
overall mRNA transcription or translation, cellular viability, cell 
cycle, trafficking, etc can show up as a hit. This concept is not new; 
in clinical medicine a diagnosis is rarely made on the basis of a single 
readout. Multiple tests are performed to rule out various other condi-
tions until the final diagnosis is reached. In high throughput RNAi 
screen this could be done serially, with a number of follow‑up screens 
to determine the “true” hits; however as a general rule when more 
information can be taken from the initial assay it should be used to 
better classify the resulting data. In screens with up to 20,000 genes 
being examined, there are likely to be hundreds if not thousands of 
potential hits, most of which are expected to be false positives.

While high‑throughput RNAi screens are a powerful tool and 
will undoubtedly elucidate the specific genes in poorly understood 
molecular pathways involved in many unmet medical conditions, 
they also pose numerous pitfalls which could cause users to spend 
considerable resources unnecessarily. A basic understanding (and 
control/reduction when possible) of the variance resulting from both 
measurement and the biology of the system specifically employed 
allows the researcher to fully utilize these libraries. We suggest 2 rules 
of thumb when designing a genome wide screen: (1) Determine the 
error of measurement in the system, and select cutoffs based on this 
level. By using the positive and negative controls employed on all 
96‑ or 384‑well plates, researchers can have several hundred runs of 
multiple genes. Assuming this level of measurement error for “true” 
hits, the researcher can then determine the power to detect hits 
of a given magnitude at any given level, and cutoffs for secondary 
screening are chosen accordingly. (2)	When possible, use a complex 
readout to control for biological variance resulting from genes 
involved in pathways which affect parts of the screen readout but not 
the process of interest. Screens with a single readout are more likely to 
have a large percentage of false positives due to alternative pathways 
affecting the readout. When multiple variables are employed, it is less 
likely that a given pathway will alter all of them is the same direction as 
the pathway of interest, resulting in fewer “repeatable” false positives.

Addressing the variance in this manner will allow for the maximi-
zation the number of biologically relevant siRNA hits while reducing 
false positives and false negatives to an acceptable level.
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