IGEM 2007 Project
From 2007.igem.org
A Microbial Biosensor Device Assembled with Ion Channels for Iron Detection under UV Irradiation and Different Levels of Oxygen The Colombian-Israeli team is made up of students from different cities in Colombia and Israeli high school students. The students who are currently attending different universities pursue careers within the sciences and engineering. Each and every one of us has a different personal motivation that drives us in our daily work for this year's IGEM project. As a group, we also shar a motivation that brings us together withing our team: to put into useful practice our passion for biology, math and computer science but most of all, to be creative. We want to find new solutions and new ways of solving problems and overcoming obstacles found in science through synthetic biology. For this year's IGEM project, our team's objectives are to enhance the detection levels of the sensing device with the implementation of ion channels and to use these results as reference to develop other types of sensing devices to be used in different conditions. Biosensors are useful molecules and/or cellular tools that allow detection of the presence of different metals including iron (II/III) and other compounds, even at detection levels beyond the limits of conventional methods (Colombian IGEM. IET Synthetic Biology Journal. 2007). Last year, the Colombian IGEM team developed a microbial biosensor device for iron detection under UV irradiation using synthetic biology. This year, in association with the Israeli team, we will develop a more sensitive biosensor device, in order to detect different levels of iron, including those below that of 0.5 ppm. The device will also be tested at different levels of oxygen and UV irradiation. Plasmid isolation, preparation of competent cells and cell transformation are being currently carried out in the laboratory at the Universidad Agraria in Bogota, Colombia. New parts designed by the Colombian group as well as parts from the MIT BioBrick will be assembled, in order to construct the genetic machine. This year, sequences from both upstream and downstream will be used for our project. One of the main new features of our device will be exposed to different environmental conditions such as oxygen levels, temperatures and varied light intensities. As we carry out all of our experiments within our laboratory, we are also developing a mathematical and computational model. |