Edinburgh/SBCodePoPper
From 2007.igem.org
< Edinburgh(Difference between revisions)
Luca.Gerosa (Talk | contribs) |
Luca.Gerosa (Talk | contribs) |
||
Line 5: | Line 5: | ||
d/dt(TetR) = TetRexp * ForwardState(time) - TetRdeg * TetR | d/dt(TetR) = TetRexp * ForwardState(time) - TetRdeg * TetR | ||
d/dt(CLambdaR) = CLambdaRexp * BackwardState(time)- CLambdaRdeg * CLambdaR | d/dt(CLambdaR) = CLambdaRexp * BackwardState(time)- CLambdaRdeg * CLambdaR | ||
- | d/dt(YFP)= (1-(1/(1+exp(((-TetR*ModTet)+SPTet))))) * TetMaxPoPS * ForwardState(time) + (1-(1/(1+exp(((-CLambdaR*ModLambda)+SPCLambda)))))* TetMaxPoPS * BackwardState(time) - YFPdeg * YFP | + | d/dt(YFP)= (1-(1/(1+exp(((-TetR*ModTet)+SPTet))))) * TetMaxPoPS * ForwardState(time) |
+ | + (1-(1/(1+exp(((-CLambdaR*ModLambda)+SPCLambda)))))* TetMaxPoPS * BackwardState(time) | ||
+ | - YFPdeg * YFP | ||
TetR(0) = 0 | TetR(0) = 0 | ||
CLambdaR(0) = 0 | CLambdaR(0) = 0 |
Latest revision as of 17:22, 24 October 2007
********** MODEL NAME Model of the Division PoPer of Edinburgh iGEM 2007 Team ********** MODEL NOTES ********** MODEL STATES d/dt(TetR) = TetRexp * ForwardState(time) - TetRdeg * TetR d/dt(CLambdaR) = CLambdaRexp * BackwardState(time)- CLambdaRdeg * CLambdaR d/dt(YFP)= (1-(1/(1+exp(((-TetR*ModTet)+SPTet))))) * TetMaxPoPS * ForwardState(time) + (1-(1/(1+exp(((-CLambdaR*ModLambda)+SPCLambda)))))* TetMaxPoPS * BackwardState(time) - YFPdeg * YFP TetR(0) = 0 CLambdaR(0) = 0 YFP(0)=0 ********** MODEL PARAMETERS TetRexp = 0.0001 CLambdaRexp = 0.0001 TetRdeg = 0.05 CLambdaRdeg = 0.05 SPTet = 7 SPCLambda = 7 ModTet = 4500 ModLambda = 4500 TetMaxPoPS = 0.0001 CLambdaMaxPoPS = 0.0001 YFPdeg = 0.05 ********** MODEL VARIABLES ********** MODEL REACTIONS ********** MODEL FUNCTIONS ********** MODEL EVENTS
********** MODEL MATLAB FUNCTIONS function [result] = ForwardState(x) FlippingTime=15; DivisionTime=80; temp=0; temp = mod(x,2*DivisionTime+2*FlippingTime); if temp < (DivisionTime) result=1; else result=0; end return function [result] = BackwardState(x) FlippingTime=15; DivisionTime=80; temp=0; temp = mod(x,2*DivisionTime+2*FlippingTime); if temp > (DivisionTime+FlippingTime) if temp < (2*DivisionTime+FlippingTime) result=1; else result=0; end else result=0; end return