MISSING = WHAT IS EXACTLY THE SPECIAL THINGS THAT WE DID? DOUBLE PROMOTERS? BIOLOGICAL AUTOMATON WITH MEMORY? COOL WAYS TO EXPLAIN A BIOLOGICAL SYSTEM AS AN ENGINEERING SYSTEM? ROBUST SYSTEM (sensitivity looks pretty good to me...) WE CAN ADD A SECTION LIKE THAT HERE
Our combined team of biologists and engineers was working on the ''E.coli'' 's ability, first, to recognize two different inputs (here we used two different chemicals), second, to remember which input was presented to them, and third, when confronted with a new input, to recognize whether it is the one that it was trained with or not.
Our combined team of biologists and engineers was working on the ''E.coli'' 's ability, first, to recognize two different inputs (here we used two different chemicals), second, to remember which input was presented to them, and third, when confronted with a new input, to recognize whether it is the one that it was trained with or not.
"All E.coli 's are equal, but some E.coli 's are more equal than others..." (freely adapted from "Animal Farm" by George Orwell)
... this is what George Orwell would have written, if he was a synthetic biologist. In the E.coli colonies on petri dishes, all bacteria are equal, except for some special ones. Our project is about modeling and designing these special E.coli that are "more equal" than the rest: they have the ability to recognize their environment and their story will be presented through this wiki ...
Motivation
Our combined team of biologists and engineers was working on the E.coli 's ability, first, to recognize two different inputs (here we used two different chemicals), second, to remember which input was presented to them, and third, when confronted with a new input, to recognize whether it is the one that it was trained with or not.
It is obvious thus, that we are coping with the problem of implementing memory capabilities in bacterial colonies. Our system is a memorizing system, and it also has the ability to understand its environment through a recognition phase. If we assume that the training chemicals are harmful for humans, we can use the developed system to understand whether a particular environment is dangerous for humans or not. In this sense, our system can have applications in the health/safety sector, as is described below:
Intelligent Biosensors and Self-Adaptation
we constructed a system capable of sensing different chemicals and producing different fluorescent proteins. Since the cells can be trained to produce one of several specific fluorescent protein types when a certain chemical is present, one can also view those cells as intelligent biosensors, able to change their properties in a training phase.
It can also be possible that the environment (and its chemicals) itself is the training phase and hence that the biosensors are adapting themselves to this environment. Eventually, the intelligent biosensors are not limited to detect chemicals. Also temperature, pH, light, pressure etc. could be detected with an appropriate system.
The main application of our system however, lie in fully exploiting its memorizing potential, in possible future applications.
Multipurpose Cell Lines
Our system can be trained to behave in a specific way, by setting its inducible toggle switch to one of its two states. This specific states can trigger specific and different events such as enzyme synthesis, transcriptional regulation, virion production, or cell death. In this case, one can view the bacterial cell line containing this system, as a multipurpose cell line. One can add a certain chemical to a cell line, and train it to the desired behavior, instead of constructing two independent cell lines.
This means, one applies an “input engineering” instead of a “DNA engineering” approach. If one extends this idea to several inducible toggle switches being harbored in the same cell line, the number of possible phenotypes increases to 2n, where n equals the number of toggle switches. For example, if one would have 5 toggle switches inside a cell line, 32 different behavior patterns would be possible.
We also introduced the concept of double promoters to the [http://partsregistry.org/Main_Page Registry of Standard Biological Parts], which can be helpful for future projects.
Team Members
ETHZ iGEM2007 Team
The ETH Zurich team consists of good mixture between biologists and engineering students, we are:
Graduate students:
[http://christos.bergeles.net Christos Bergeles],
[http://www.tik.ee.ethz.ch/~sop/people/thohm/ Tim Hohm], [http://www.fussenegger.ethz.ch/people/kemmerc Christian Kemmer],
Joseph Knight,
[http://csb.inf.ethz.ch/people/uhr.html Markus Uhr],
[http://www.ricomoeckel.de Rico Möckel]
Project advisors:
[http://www.ipe.ethz.ch/laboratories/bpl/people/panke Sven Panke],
[http://csb.inf.ethz.ch/people/stelling.html Joerg Stelling]
For more information about us, visit our Meet the Team page.
Acknowledgments
The idea for the project as well as its implementation was done by the ETH iGEM 2007 team. Still, we would like to thank the people in [http://www.ipe.ethz.ch/laboratories/bpl/index Sven Panke's Lab], especially Andreas Meyer who was always there for us when we had a problem. Additionally, we would like to thank [http://www.facs.ethz.ch Alfredo Franco-Obregóns lab] and Oralea Büchi for the help with the flow cytometry.
We would also like to acknowledge the financial support by [http://europa.eu EU], the [http://www.ethz.ch ETH Zurich], and [http://www.geneart.com GeneArt]: