Tokyo Tech

From 2007.igem.org

(Difference between revisions)
(5.Future works)
(5.Future works)
Line 78: Line 78:
===5.Future works===
===5.Future works===
-
Based on the results from, it is possible to sophisticate our model.
+
Based on the results from wet experiments, the next dry approach - analysis and simulation - should be performed, which will in turn testified and confirmed by wet experiments.
 +
Continueing these processes, if time permits, would further sophisticate our model.

Revision as of 05:16, 22 October 2007

Tokyotech3.JPG

1,Project

Concept & Model

We made bacterial society that follows Pareto's principle, for example, Ant society


TOP.JPG

Requirements

Our requirements for construction this model are two things, bistability and coexistence by cell-cell communication


Bistability.JPGCoexistence.JPG

Genetic circuit

We constructed the genetic circuit to fill its requirements. Therefore we made new parts


Tokyo genetic circuit s.jpg

               Our construction parts are Here!!!

Our GOAL

We indicated our goal of the project by the simulation!! The simulation proved that our genetic circuit have existence of solution.


Tokyo simulation s2.jpg
Our goal.JPG

2,Works

Approach: Combination of Wet & Dry trials

We have alternated/combined Wet and Dry experiments to achieve our goal

0.Wet : Hybrid promoter

We need to develop the promoter that can receive two input, AHL & reperssor. We tryed to create and successed!!

Hybridgraph.JPG

1.Dry :  Formulation

We writed the Formulation

2.Wet :  Assay

We decided the parameter of hill coefficients by the assay of AHL & IPTG

Hill AHL.JPG|Hill IPTG.JPG

3.Dry :  Simulation

wet実験で求められたパラメータを用いて、集団が怠け者の細胞のみとなった場合に、一度不安定化して、続いて働き者と怠け者になれることをStocastic Simulationで確認した。このシステムの挙動に必要な他のパラメータ範囲が判明した。 By stochastic simulation using parameters obtained from our wet experiments we have confirmed that the whole system is unstable when there are only idlers left, and then, they become either of workers and idlers. Also we have determined other parameters necessary for the desired behavior of this system.

Tokyo simulation s2.jpg

4.Wet :  Assay

Simulationを満たすための他のパラメータが現在のプラスミドで可能であるかを、大腸菌を用いた実験で確認した。
1. By the wet experiments using E. coli, we testified whether our current plasmids could satisfy the other required conditions (for the desired behavior of the system) estimated by the simulation.
2. We tested whether our plasmids gave the other parameters to satisfy the simulation by the experiments using E. coli.

5.Future works

Based on the results from wet experiments, the next dry approach - analysis and simulation - should be performed, which will in turn testified and confirmed by wet experiments. Continueing these processes, if time permits, would further sophisticate our model.


3,About our team


Students
Satoru Akama | Kenichiro Iwasaki | Hiroki Kawahara | Hajime Nakatani

Advisors: Last year's member
Syotarou Ayukawa | Akio Kobayashi

Instructors
[http://www.sb.dis.titech.ac.jp/ Daisuke Kiga] | [http://www.es.dis.titech.ac.jp/ Masayuki Yamamura] | [http://nicosia.is.s.u-tokyo.ac.jp/~hagiya/ Masami Hagiya] | [http://www.sb.dis.titech.ac.jp/ Masahiko Uchiyama]

Links sunaba