Tokyo/Requirements
From 2007.igem.org
(→2. Cell-cell communication) |
(→What is necessary for "Balanced differentiation"?) |
||
Line 19: | Line 19: | ||
- | [[Image: | + | [[Image:Stable.jpg|thumb|250px| '''Fig.1: Differentiation(=bistability)''' <br>Cells with the same gene take either of two differentiated states, A (worker, red) or B (idler, green) stably.]] |
Revision as of 01:55, 27 October 2007
Abstract Concept & Model Requirements Genetic_circuit Works About_our_team
What is necessary for "Balanced differentiation"?
The most important and underlying point of our model is that the system is stable against environmental changes when two types of differentiated individuals coexist, called "Balanced differentiation." Our project have aimed at this "Balanced differentiation" but not dynamic equilibrium such as chemical ones.
To achieve this “Balanced differentiation", our model requires
1. differentiation(=bistability) generated by mutural-inhibition circuit.
2. cell-cell communication by quarum sensing
1. Differentiation(=bistability)
~ at an individual level ~
For "balanced differentiation" in our model, two types of cells should coexist stably. Therefore, cells with THE SAME GENE SET need to take either of TWO DIFFERENTIATED STATES, A (Worker) or B (Idler) in our project as shown in Fig. 1. In order to distinguish from dynamic stability, "balanced differentiation" must be achieved by two distinct states inconvertible each other. This bistability can be achieved by mutual-inhibition circuit.
2. Cell-cell communication
When this balanced differentiation is disrupted, by removing all the A type for example, the rest individual B cells sense the change. Their differentiated state become unstable as if cells became upset. Then they dedifferentiate and redifferentiate. As a result, at a certain ratio of A and B again, the whole system comes back to a stable states.