Boston University

From 2007.igem.org

(Difference between revisions)
(Our Project)
(Our Project)
Line 62: Line 62:
:'''[[Boston_University/TOPO Cloning Results | TOPO Cloning]]'''
:'''[[Boston_University/TOPO Cloning Results | TOPO Cloning]]'''
:'''[[Boston_University/TOPO Transformation Results | TOPO Transformation]]'''
:'''[[Boston_University/TOPO Transformation Results | TOPO Transformation]]'''
 +
:'''[[Boston_University/Plasmid Customization | Plasmid Customization]]'''
:'''[[Hi-Scores and Other Greatness]]'''
:'''[[Hi-Scores and Other Greatness]]'''
| align="left" width="250" |  
| align="left" width="250" |  

Revision as of 14:44, 23 July 2007

BU banner.JPG


Contents

About Us

Welcome to the wiki for Boston University's iGEM 2007 team!

BU bubio.jpg

Our team consists of David Shi, Rahul Ahuja, Christian Ling, and Danny Bellin, all soon-to-be juniors majoring in Biomedical Engineering at Boston University.

We are advised by [http://www.bu.edu/dbin/bme/faculty/?prof=tgardner Dr. Timothy Gardner], Assistant Professor of Biomedical Engineering, as well as Frank Juhn, Kevin Litcofsky, and Stephen Schneider, students in the [http://gardnerlab.bu.edu/ Gardner Laboratory], where we work. We are grateful to our advisors for their time and support!

We are also grateful to [http://www.pfizer.com Pfizer], the [http://www.bu.edu/eng Boston University College of Engineering], and the [http://www.bu.edu/eng/bme Boston University Department of Biomedical Engineering], for their generous support of our team.

Our Project

The goal of our project is to use directed evolution to increase the current output of the electrogenic bacteria Shewanella oneidensis (affectionately referred to as Shewie in the Gardner Lab). As the name suggests, directed evolution consists of two main steps: intentionally mutating DNA and then selecting for the expression of desired traits.

In the case of S. oneidensis, certain global transcription regulators in its genome have been identified as being related to the metabolic processes of the bacteria. These global transcription regulators will be mutated via error-prone PCR and transformed into S. oneidensis in hopes of altering current output.

Bacteria that express greater electrogenic capability will then be selected via flow cytometry or other viable selection methods.

This process of directed evolution can be repeated with previously selected S. oneidensis in order to increase the level of

electrogenesis even further.


Our Team Project Design Project Results Miscellany
Undergraduate Students
Rahul Ahuja Daniel Bellin
Christian Ling David Shi
Graduate Advisors
Frank Juhn Kevin Litcofsky
Stephen Schneider
Principal Advisor
[http://www.bu.edu/dbin/bme/faculty/?prof=tgardner Dr. Timothy Gardner]
Why S. oneidensis?
Directed Evolution
1. Plasmid Selection and Design
2. Mutation of GTFs
3. Transformation of GTFs into Shewie
TOPO Cloning Conjugation Zymo
4. Selection Methods
Microencapsulation
Redox-sensitive fluorescent dye
Fluorescence-Activated Cell Sorting
Zymo Transformation
Bacterial Conjugation
Electroporation
TOPO Cloning
TOPO Transformation
Plasmid Customization
Hi-Scores and Other Greatness
Project Progress
Protocols
Lab Photos
BU Photos
Image Dump (56k stay away!)

Plays of the Week

To be updated soon...from splattered gels to nearly setting the lab on fire, we've got it all!


Supported By

BU pfizer.gif Bu collegeofengineering.gif Bu Gardner logo small.jpg