Chiba

From 2007.igem.org

Revision as of 14:59, 26 October 2007 by Risa (Talk | contribs)

Chiba logo.png

Introduction | Project Design ( 1.Sticky Hands | 2.Communication | 3.Size Control ) | Making Marimos | Our Goal || Team Members | メンバ連絡簿

Introduction

Marimo in the lake

Chiba University iGEM07 team's project is to make a Marimo-ish gathering of bacteria. Marimo is a green spherical shaped algae, which is a popular living organism in Japan as a National Treasure. When you come to Japan, you absolutely come across to Marimo in aquariums, TV programs or Mangas :)


Backgrounds

How Marimos are Made

球形の毬藻は,他の崩れた毬藻断片を核として放射状に伸びることによって出来る.よって成長後の球形毬藻は全て一様で核が存在しない.ちなみに最初の無核球形毬藻は,他の泥や砂などを核として成長し崩れた毬藻断片を核としたと考えられている.(イメージ図)

more about marimos...

References:

  • 阪井與志雄,マリモの科学,北海道大学図書刊行会, 1991 (Yoshio Sakai, Marimo no Kagaku("The Science of Marimo"))
  • 中沢信午,マリモはなぜ丸い その生態と形態,中公新書,1989 (Shingo Nakazawa, Marimo wa naze marui ("Why marimos are spherical"))

Motivations

Why Make a "Marimo"?

Making 3D colonies- for next generation (lazier) molecular biologists
For years microbiologists have been using agar plates to isolate cells from each other. By spreading the diluted cells on a solid surface, we can make "colonies", dome-shaped gathering of genetically identical cells. Although convenient, this is only two-dimentional. What if we can create three dimentional (spherical) colonies with controlled/ defined size? Thus we can eliminate the plating process that everybody hates. Combined with the microfluidics devices, we might be able to pick, isolate, count, or innoculate each of the floating yet independent colonies to conduct routine works in future molecular biology. Crazy thought? Well, that is exactly what our advisors say.

Toward the control the population size of the bacteria community
Even in the bacteria community, sometimes they need to do the population control. This is especially so when we think about the chemical production using bacteria robots.

Besides the above illogical/ unjustified reasons, we think this project leads to the behavior control of the bacterial comunity. Lots of challenge in the project including diffusion control of small/ large molecules, chemical production/ degradation balancing,.....