Tokyo/Formulation/2.toggle model with hybrid promoter
From 2007.igem.org
(→) |
|||
Line 1: | Line 1: | ||
+ | __NOTOC__ | ||
+ | <br>[[Tokyo/Works|Works top]] 0.[[Tokyo/Works/Hybrid promoter|Hybrid promoter]] 1.[[Tokyo/Works/Formulation |Formulation]] 2.[[Tokyo/Works/Assay |Assay1]] 3.[[Tokyo/Works/Simulation |Simulation]] 4.[[Tokyo/Works/Assay2 |Assay2]] 5.[[Tokyo/Works/Future works |Future works]] | ||
+ | <br><br>'''Assay1''' [[Tokyo/Formulation/1.toggle model |Step1]] [[Tokyo/Formulation/2.toggle model with hybrid promoter |Step2]] [[Tokyo/Formulation/3.AHL-experssing model|Step3]] [[Tokyo/Formulation/4.population model|Step4]] [[Tokyo/Formulation/5.stochastic differential equation model with poisson random variables|Step5]] | ||
+ | <br> | ||
<br>[[Image:AHLresponse2-1.jpg|300px|none|thumb|Figure 2.1]] | <br>[[Image:AHLresponse2-1.jpg|300px|none|thumb|Figure 2.1]] | ||
Revision as of 06:46, 25 October 2007
Works top 0.Hybrid promoter 1.Formulation 2.Assay1 3.Simulation 4.Assay2 5.Future works
Assay1 Step1 Step2 Step3 Step4 Step5
Assuming the system where E. coli does not produce AHL by themselves, we have observed the system's reaction to ab extra AHL. The ODEs were obtained as
where the factor surrounded in the orange box represents the activation of promoter B.
These equations were normalized as follows:
Fig 2.2 represent the our thinking behavior of this system.
- with low concentration of AHL, the B state becomes unstable. so that the cells at the B state move to the A state which is stable.
- with hign concentration of AHL, both A and B states are stable.The cells at the A state keep the A state and that at the B state keep the B state.
The phase plane and the bifurcation are shown in Fig●:
分岐図を載せる!!!!!!!
Step.2 >> Step.3